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Multitasking in Small Embedded Systems  

About FreeRTOS 

FreeRTOS is solely owned, developed and maintained by Real Time Engineers Ltd.  Real 

Time Engineers Ltd. have been working in close partnership with the worldôs leading chip 

companies for well over a decade to provide you award winning, commercial grade, and 

completely free high quality software. 

FreeRTOS is ideally suited to deeply embedded real-time applications that use 

microcontrollers or small microprocessors.  This type of application normally includes a mix of 

both hard and soft real-time requirements.   

Soft real-time requirements are those that state a time deadlineðbut breaching the deadline 

would not render the system useless.  For example, responding to keystrokes too slowly might 

make a system seem annoyingly unresponsive without actually making it unusable. 

Hard real-time requirements are those that state a time deadlineðand breaching the deadline 

would result in absolute failure of the system.  For example, a driverôs airbag has the potential 

to do more harm than good if it responded to crash sensor inputs too slowly. 

FreeRTOS is a real-time kernel (or real-time scheduler) on top of which embedded 

applications can be built to meet their hard real-time requirements.  It allows applications to be 

organized as a collection of independent threads of execution.  On a processor that has only 

one core, only a single thread can be executing at any one time.  The kernel decides which 

thread should be executing by examining the priority assigned to each thread by the 

application designer.  In the simplest case, the application designer could assign higher 

priorities to threads that implement hard real-time requirements, and lower priorities to threads 

that implement soft real-time requirements.  This would ensure that hard real-time threads are 

always executed ahead of soft real-time threads, but priority assignment decisions are not 

always that simplistic. 

Do not be concerned if you do not fully understand the concepts in the previous paragraph yet. 

The following chapters provide a detailed explanation, with many examples, to help you 

understand how to use a real-time kernel, and how to use FreeRTOS, in particular.  

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
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Value Proposition 

The unprecedented global success of FreeRTOS comes from its compelling value proposition;  

FreeRTOS is professionally developed, strictly quality controlled, robust, supported, does not 

contain any intellectual property ownership ambiguity, and is truly free to use in commercial 

applications without any requirement to expose your proprietary source code.  You can take a 

product to market using FreeRTOS without even talking to Real Time Engineers ltd., let alone 

paying any fees, and thousands of people do just that.  If, at any time, you would like to 

receive additional backup, or if your legal team require additional written guarantees or 

indemnification, then there is a simple low cost commercial upgrade path.  Peace of mind 

comes with the knowledge that you can opt to take the commercial route at any time you 

choose. 

A Note About Terminology 

In FreeRTOS, each thread of execution is called a ótaskô.  There is no consensus on 

terminology within the embedded community, but I prefer ótaskô to óthread,ô as thread can have 

a more specific meaning in some fields of application. 

Why Use a Real-time Kernel? 

There are many well established techniques for writing good embedded software without the 

use of a kernel, and, if the system being developed is simple, then these techniques might 

provide the most appropriate solution.  In more complex cases, it is likely that using a kernel 

would be preferable, but where the crossover point occurs will always be subjective. 

As already described, task prioritization can help ensure an application meets its processing 

deadlines, but a kernel can bring other less obvious benefits, too.  Some of these are listed 

very briefly below. 

¶ Abstracting away timing information 

The kernel is responsible for execution timing and provides a time-related API to the 

application.  This allows the structure of the application code to be simpler, and the overall 

code size to be smaller. 

¶ Maintainability/Extensibility 
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Abstracting away timing details results in fewer interdependencies between modules, and 

allows the software to evolve in a controlled and predictable way.  Also, the kernel is 

responsible for timing, so application performance is less susceptible to changes in the 

underlying hardware. 

¶ Modularity 

Tasks are independent modules, each of which should have a well-defined purpose.  

¶ Team development 

Tasks should also have well-defined interfaces, allowing easier development by teams. 

¶ Easier testing 

If tasks are well-defined independent modules with clean interfaces, they can be tested in 

isolation.  

¶ Code reuse 

Greater modularity and fewer interdependencies results in code that can be reused with 

less effort.  

¶ Improved efficiency 

Using a kernel allows software to be completely event-driven, so no processing time is 

wasted by polling for events that have not occurred.  Code executes only when there is 

something that must be done. 

Counter to the efficiency saving is the need to process the RTOS tick interrupt, and to 

switch execution from one task to another.  However, applications that donôt make use of an 

RTOS normally include some form of tick interrupt anyway. 

¶ Idle time 

The Idle task is created automatically when the scheduler is started.  It executes whenever 

there are no application tasks wishing to execute.  The idle task can be used to measure 

spare processing capacity, to perform background checks, or simply to place the processor 

into a low-power mode. 

¶ Power Management 

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
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The efficiency gains that are obtained by using an RTOS allow the processor to spend 

more time in a low power mode.   

Power consumption can be decreased significantly by placing the processor into a low 

power state each time the Idle task runs.  FreeRTOS also has a special tick-less mode.  

Using the tick-less mode allows the processor to enter a lower power mode than would 

otherwise be possible, and remain in the low power mode for longer. 

¶ Flexible interrupt handling 

Interrupt handlers can be kept very short by deferring processing to either a task created by 

the application writer, or the FreeRTOS daemon task.   

¶ Mixed processing requirements 

Simple design patterns can achieve a mix of periodic, continuous and event-driven 

processing within an application.  In addition, hard and soft real-time requirements can be 

met by selecting appropriate task and interrupt priorities. 

FreeRTOS Features 

FreeRTOS has the following standard features: 

¶ Pre-emptive or co-operative operation 

¶ Very flexible task priority assignment 

¶ Flexible, fast and light weight task notification mechanism 

¶ Queues  

¶ Binary semaphores 

¶ Counting semaphores  

¶ Mutexes 

¶ Recursive Mutexes 

¶ Software timers 

¶ Event groups 

¶ Tick hook functions  

¶ Idle hook functions  

¶ Stack overflow checking 

¶ Trace recording 

¶ Task run-time statistics gathering 
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¶ Optional commercial licensing and support 

¶ Full interrupt nesting model (for some architectures) 

¶ A tick-less capability for extreme low power applications 

¶ Software managed interrupt stack when appropriate (this can help save RAM) 

Licensing, and The FreeRTOS, OpenRTOS, and SafeRTOS Family 

The FreeRTOS open source license is designed to ensure: 

1. FreeRTOS can be used in commercial applications. 

2. FreeRTOS itself remains freely available to everybody. 

3. FreeRTOS users retain ownership of their intellectual property. 

See http://www.FreeRTOS.org/license for the latest open source license information. 

OpenRTOS is a commercially licensed version of FreeRTOS provided under license from Real 

Time Engineers Ltd. by a third party. 

SafeRTOS shares the same usage model as FreeRTOS, but has been developed in 

accordance with the practices, procedures, and processes necessary to claim compliance with 

various internationally recognized safety related standards. 

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
http://www.freertos.org/
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Included Source Files and Projects  

Obtaining the Examples that Accompany this Book 

Source code, pre-configured project files, and full build instructions for all the examples 

presented in this book are provided in an accompanying zip file.  You can download the zip file 

from http://www.FreeRTOS.org/Documentation/code if you did not receive a copy with the 

book.  The zip file may not include the latest version of FreeRTOS. 

The screen shots included in this book were taken while the examples were executing in a 

Microsoft Windows environment, using the FreeRTOS Windows port.  The project that uses 

the FreeRTOS Windows port is pre-configured to build using the free Express edition of Visual 

Studio, which can be downloaded from http://www.microsoft.com/express.  Note that, while the 

FreeRTOS Windows port provides a convenient evaluation, test and development platform, it 

does not provide true real-time behavior. 
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Chapter 1   
 
The FreeRTOS Distribution 
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1.1 Chapter Introduction and Scope  

FreeRTOS is distributed as a single zip file archive that contains all the official FreeRTOS 

ports, and a large number of pre-configured demo applications. 

Scope 

This chapter aims to help users orientate themselves with the FreeRTOS files and directories 

by: 

¶ Providing a top level view of the FreeRTOS directory structure. 

¶ Describing which files are actually required by any particular FreeRTOS project. 

¶ Introducing the demo applications. 

¶ Providing information on how a new project can be created. 

The description here relates only to the official FreeRTOS distribution.  The examples that 

come with this book use a slightly different organization. 

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
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1.2 Understanding the FreeRTOS Distribution  

Definition: FreeRTOS Port 

FreeRTOS can be built with approximately twenty different compilers, and can run on more 

than thirty different processor architectures.  Each supported combination of compiler and 

processor is considered to be a separate FreeRTOS port. 

Building FreeRTOS 

FreeRTOS can be thought of as a library that provides multi-tasking capabilities to what would 

otherwise be a bare metal application. 

FreeRTOS is supplied as a set of C source files.  Some of the source files are common to all 

ports, while others are specific to a port.  Build the source files as part of your project to make 

the FreeRTOS API available to your application.  To make this easy for you, each official 

FreeRTOS port is provided with a demo application.  The demo application is pre-configured 

to build the correct source files, and include the correct header files. 

Demo applications should build óout of the boxô, although some demos are older than others, 

and sometimes a change in the build tools made since the demo was released can cause an 

issue.  Section 1.3 describes the demo applications. 

FreeRTOSConfig.h 

FreeRTOS is configured by a header file called FreeRTOSConfig.h.   

FreeRTOSConfig.h is used to tailor FreeRTOS for use in a specific application.  For example, 

FreeRTOSConfig.h contains constants such as configUSE_PREEMPTION, the setting of 

which defines whether the co-operative or pre-emptive scheduling algorithm will be used1.  As 

FreeRTOSConfig.h contains application specific definitions, it should be located in a directory 

that is part of the application being built, not in a directory that contains the FreeRTOS source 

code. 

A demo application is provided for every FreeRTOS port, and every demo application contains 

a FreeRTOSConfig.h file.  It is therefore never necessary to create a FreeRTOSConfig.h file 

                                                

1 Scheduling algorithms are described in section 3.12. 
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from scratch.  Instead, it is recommended to start with, then adapt, the FreeRTOSConfig.h 

used by the demo application provided for the FreeRTOS port in use.  

The Official FreeRTOS Distribution 

FreeRTOS is distributed in a single zip file.  The zip file contains source code for all the 

FreeRTOS ports, and project files for all the FreeRTOS demo applications.  It also contains a 

selection of FreeRTOS+ ecosystem components, and a selection of FreeRTOS+ ecosystem 

demo applications. 

Do not be put off by the number of files in the FreeRTOS distribution!  Only a very small 

number of files are required in any one application. 

The Top Directories in the FreeRTOS Distribution 

The first and second level directories of the FreeRTOS distribution are shown and described in 

Figure 1. 

 

FreeRTOS 
 ƅ  ƅ 
 ƅ  ƊƄSource  Directory containing the FreeRTOS source files   
 ƅ  ƅ 
 ƅ  ƈƄDemo    Directory containing pre - configured and port specific FreeRTOS demo projects  
 ƅ 
FreeRTOS- Plus       
    ƅ 
    ƊƄSource   Directory containing source code for some FreeRTOS+ ecosystem components   
    ƅ 
    ƈƄDemo    Directory containing demo projects for FreeRTOS+ ecosystem components  

     

Figure 1.  Top level directories within the FreeRTOS distribution  

The zip file only contains one copy of the FreeRTOS source files; all the FreeRTOS demo 

projects, and all the FreeRTOS+ demo projects, expect to find the FreeRTOS source files in 

the FreeRTOS/Source directory, and may not build if the directory structure is changed.   

FreeRTOS Source Files Common to All Ports 

The core FreeRTOS source code is contained in just two C files that are common to all the 

FreeRTOS ports.  These are called tasks.c, and list.c, and they are located directly in the 

FreeRTOS/Source directory, as shown in Figure 2.  In addition to these two files, the following 

source files are located in the same directory: 

¶ queue.c 

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
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queue.c provides both queue and semaphore services, as described later in this book.  

queue.c is nearly always required. 

¶ timers.c 

timers.c provides software timer functionality, as described later in this book.  It need only 

be included in the build if software timers are actually going to be used. 

¶ event_groups.c 

event_groups.c provides event group functionality, as described later in this book.  It need 

only be included in the build if event groups are actually going to be used. 

¶ croutine.c 

croutine.c implements the FreeRTOS co-routine functionality.  It need only be included in 

the build if co-routines are actually going to be used.  Co-routines were intended for use on 

very small microcontrollers, are rarely used now, and are therefore not maintained to the 

same level as other FreeRTOS features.  Co-routines are not described in this book. 

 

FreeRTOS           
    ƅ 
    ƈƄSource        
        ƅ 
        ƊƄtasks.c        FreeRTOS s ource file -  always required  
        ƊƄlist.c         FreeRTOS s ource file -  always required  
        ƊƄqueue.c        FreeRTOS s ource file -  nearly always required  
        ƊƄtimers.c       FreeRTOS s ource file -  optional  
        ƊƄevent_groups.c FreeRTOS s ource file -  optional  
        ƈƄcroutine.c     FreeRTOS s ource file -  optional  

     

Figure 2.  Core FreeRTOS source files within the FreeRTOS directory tree 

It is recognized that the file names may result in name space clashes, as many projects will 

already include files that have the same names.  It is however considered that changing the 

names of the files now would be problematic, as to do so would break compatibility with the 

many thousands of projects that use FreeRTOS, as well as automation tools, and IDE plug-

ins. 
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FreeRTOS Source Files Specific to a Port 

Source files specific to a FreeRTOS port are contained within the FreeRTOS/Source/portable 

directory.  The portable directory is arranged as a hierarchy, first by compiler, then by 

processor architecture.  The hierarchy is shown in Figure 3.   

If you are running FreeRTOS on a processor with architecture óarchitectureô using compiler 

ócompilerô then, in addition to the core FreeRTOS source files, you must also build the files 

located in FreeRTOS/Source/portable/[compiler]/[architecture] directory. 

As will be described in Chapter 2, Heap Memory Management, FreeRTOS also considers 

heap memory allocation to be part of the portable layer.  Projects that use a FreeRTOS 

version older than V9.0.0 must include a heap memory manager.  From FreeRTOS V9.0.0 a 

heap memory manager is only required if configSUPPORT_DYNAMIC_ALLOCATION is set to 

1 in FreeRTOSConfig.h, or if configSUPPORT_DYNAMIC_ALLOCATION is left undefined.   

FreeRTOS provides five example heap allocation schemes.  The five schemes are named 

heap_1 to heap_5, and are implemented by the source files heap_1.c to heap_5.c 

respectively.  The example heap allocation schemes are contained in the 

FreeRTOS/Source/portable/MemMang directory.  If you have configured FreeRTOS to use 

dynamic memory allocation then it is necessary to build one of these five source files in your 

project, unless your application provides an alternative implementation. 

 
FreeRTOS  
  ƅ 
  ƈƄSource                 
    ƅ 
    ƈƄportable Director y containing all port specific source files  
       ƅ    
       ƊƄMemMang Directory containing the 5 alternative heap allocation source files  
       ƅ    
       ƊƄ[compiler 1] Directory containing port files specific to compiler 1  
       ƅ  ƅ    
       ƅ  ƊƄ[architecture 1] Contains files for the compiler 1 architecture 1 port  
       ƅ  ƊƄ[architecture 2]  Contains files for the compiler 1 architecture 2 port  
       ƅ  ƈƄ[architecture 3]  Contains files for the compiler 1 architecture 3 port  
       ƅ             
       ƈƄ[compiler 2] Directory containing port files specific to compiler 2  
          ƅ    
          ƊƄ[architecture 1]  Contains files for the compiler 2 architecture 1 port  
          ƊƄ[architecture 2]  Contains files for the compiler 2 architecture 2 port  
          ƈƄ[etc.]  

     

Figure 3.  Port specific source files within the FreeRTOS directory tree  

Include Paths 

FreeRTOS requires three directories to be included in the compilerôs include path.  These are: 

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
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1. The path to the core FreeRTOS header files, which is always 

FreeRTOS/Source/include. 

2. The path to the source files that are specific to the FreeRTOS port in use.  As 

described above, this is FreeRTOS/Source/portable/[compiler]/[architecture]. 

3. A path to the FreeRTOSConfig.h header file.  

Header Files 

A source file that uses the FreeRTOS API must include óFreeRTOS.hô, followed by the header 

file that contains the prototype for the API function being usedðeither ótask.hô, óqueue.hô, 

ósemphr.hô, ótimers.hô or óevent_groups.hô. 
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1.3 Demo Applications  

Each FreeRTOS port comes with at least one demo application that should build with no errors 

or warnings being generated, although some demos are older than others, and sometimes a 

change in the build tools made since the demo was released can cause an issue.  

A note to Linux users:  FreeRTOS is developed and tested on a Windows host.  Occasionally 

this results in build errors when demo projects are built on a Linux host.  Build errors are 

almost always related to the case of letters used when referencing file names, or the direction 

of slash characters used in file paths.  Please use the FreeRTOS contact form 

(http://www.FreeRTOS.org/contact) to alert us to any such errors. 

The demo application has several purposes: 

¶ To provide an example of a working and pre-configured project, with the correct files 

included, and the correct compiler options set. 

¶ To allow óout of the boxô experimentation with minimal setup or prior knowledge. 

¶ As a demonstration of how the FreeRTOS API can be used. 

¶ As a base from which real applications can be created. 

Each demo project is located in a unique sub-directory under the FreeRTOS/Demo directory.  

The name of the sub-directory indicates the port to which the demo project relates. 

Every demo application is also described by a web page on the FreeRTOS.org web site.  The 

web page includes information on: 

¶ How to locate the project file for the demo within the FreeRTOS directory structure. 

¶ Which hardware the project is configured to use. 

¶ How to set up the hardware for running the demo. 

¶ How to build the demo. 

¶ How the demo is expected to behave. 

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
http://www.freertos.org/contact
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All the demo projects create a subset of the common demo tasks, the implementations of 

which are contained in the FreeRTOS/Demo/Common/Minimal directory.  The common demo 

tasks exist purely to demonstrate how the FreeRTOS API can be usedðthey do not 

implement any particular useful functionality. 

More recent demo projects can also build a beginners óblinkyô project.  Blinky projects are very 

basic.  Typically they will create just two tasks and one queue. 

Every demo project includes a file called main.c.  This contains the main() function, from where 

all the demo application tasks are created.  See the comments within the individual main.c files 

for information specific to that demo. 

The FreeRTOS/Demo directory hierarchy is shown in Figure 4. 

 

 
FreeRTOS  
    ƅ 
    ƈƄDemo        Directory containing all the demo projects  
       ƅ 
       ƊƄ[Demo x]  Contains the project file that builds demo óxô 
       ƅ 
       ƊƄ[Demo y]  Contains the project file that builds demo óyô 
       ƅ 
       ƊƄ[Demo z]  Contains the project file that builds demo ózô 
       ƅ 
       ƈƄCommon   Contains files that are built by all the demo applications      
     

Figure 4.  The demo directory hierarchy 
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1.4 Creating a FreeRTOS Project  

Adapting One of the Supplied Demo Projects 

Every FreeRTOS port comes with at least one pre-configured demo application that should 

build with no errors or warnings.  It is recommended that new projects are created by adapting 

one of these existing projects; this will allow the project to have the correct files included, the 

correct interrupt handlers installed, and the correct compiler options set. 

To start a new application from an existing demo project: 

1. Open the supplied demo project and ensure that it builds and executes as expected.   

2. Remove the source files that define the demo tasks.  Any file that is located within the 

Demo/Common directory can be removed from the project. 

3. Delete all the function calls within main(), except prvSetupHardware() and 

vTaskStartScheduler(), as shown in Listing 1. 

4. Check the project still builds. 

Following these steps will create a project that includes the correct FreeRTOS source files, but 

does not define any functionality. 

 

int main( void )  

{  

    /* Perform any hardware setup necessary. */  

    prvSetupHardware ();  

 

    /* ---  APPLICATION TASKS CAN BE CREATED HERE ---  */  

     

    /* Start the created tasks running. */  

    vTaskStartScheduler();  

     

    /* Execution will only reach here if there was insufficient heap to  

    start the scheduler. */  

    for( ;; );  

    return 0;  

}  

 

Listing 1.  The template for a new main() function 

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
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Creating a New Project from Scratch 

As already mentioned, it is recommended that new projects are created from an existing demo 

project.  If this is not desirable, then a new project can be created using the following 

procedure: 

1. Using your chosen tool chain, create a new project that does not yet include any 

FreeRTOS source files. 

2. Ensure the new project can be built, downloaded to your target hardware, and 

executed. 

3. Only when you are sure you already have a working project, add the FreeRTOS source 

files detailed in Table 1 to the project. 

4. Copy the FreeRTOSConfig.h header file used by the demo project provided for the port 

in use into the project directory. 

5. Add the following directories to the path the project will search to locate header files: 

¶ FreeRTOS/Source/include  

¶ FreeRTOS/Source/portable/[compiler]/[architecture] (where [compiler] and 

[architecture] are correct for your chosen port) 

¶ The directory containing the FreeRTOSConfig.h header file 

6. Copy the compiler settings from the relevant demo project.   

7. Install any FreeRTOS interrupt handlers that might be necessary.  Use the web page 

that describes the port in use, and the demo project provided for the port in use, as a 

reference.  
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Table 1.  FreeRTOS source files to include in the project 

File Location 

tasks.c FreeRTOS/Source 

queue.c FreeRTOS/Source 

list.c FreeRTOS/Source 

timers.c FreeRTOS/Source 

event_groups.c FreeRTOS/Source 

All C and assembler files FreeRTOS/Source/portable/[compiler]/[architecture] 

heap_n.c FreeRTOS/Source/portable/MemMang, where n is either 1, 2, 

3, 4 or 5.  This file became optional from FreeRTOS V9.0.0. 

Projects that use a FreeRTOS version older than V9.0.0 must build one of the heap_n.c files.  

From FreeRTOS V9.0.0 a heap_n.c file is only required if 

configSUPPORT_DYNAMIC_ALLOCATION is set to 1 in FreeRTOSConfig.h or if 

configSUPPORT_DYNAMIC_ALLOCATION is left undefined.  Refer to Chapter 2, Heap 

Memory Management, for more information. 

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
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1.5 Data Types and Coding Style Guide  

Data Types 

Each port of FreeRTOS has a unique portmacro.h header file that contains (amongst other 

things) definitions for two port specific data types:  TickType_t and BaseType_t.  These data 

types are described in Table 2. 

 

Table 2.  Port specific data types used by FreeRTOS 

Macro or typedef 
used 

Actual type 

TickType_t FreeRTOS configures a periodic interrupt called the tick interrupt.   

The number of tick interrupts that have occurred since the FreeRTOS 

application started is called the tick count.  The tick count is used as a 

measure of time.   

The time between two tick interrupts is called the tick period.  Times are 

specified as multiples of tick periods.  

TickType_t is the data type used to hold the tick count value, and to 

specify times.   

TickType_t can be either an unsigned 16-bit type, or an unsigned 32-bit 

type, depending on the setting of configUSE_16_BIT_TICKS within 

FreeRTOSConfig.h.  If configUSE_16_BIT_TICKS is set to 1, then 

TickType_t is defined as uint16_t.  If configUSE_16_BIT_TICKS is set to 

0 then TickType_t is defined as uint32_t.   

Using a 16-bit type can greatly improve efficiency on 8-bit and 16-bit 

architectures, but severely limits the maximum block period that can be 

specified.  There is no reason to use a 16-bit type on a 32-bit 

architecture. 
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Table 2.  Port specific data types used by FreeRTOS 

Macro or typedef 
used 

Actual type 

BaseType_t This is always defined as the most efficient data type for the architecture.  

Typically, this is a 32-bit type on a 32-bit architecture, a 16-bit type on a 

16-bit architecture, and an 8-bit type on an 8-bit architecture.   

BaseType_t is generally used for return types that can take only a very 

limited range of values, and for pdTRUE/pdFALSE type Booleans. 

Some compilers make all unqualified char variables unsigned, while others make them signed.  

For this reason, the FreeRTOS source code explicitly qualifies every use of char with either 

ósignedô or óunsignedô, unless the char is used to hold an ASCII character, or a pointer to char 

is used to point to a string. 

Plain int types are never used. 

Variable Names 

Variables are prefixed with their type:  ócô for char, ósô for int16_t (short), ólô int32_t (long), and óxô 

for BaseType_t and any other non-standard types (structures, task handles, queue handles, 

etc.). 

If a variable is unsigned, it is also prefixed with a óuô.  If a variable is a pointer, it is also prefixed 

with a ópô.  For example, a variable of type uint8_t will be prefixed with óucô, and a variable of 

type pointer to char will be prefixed with ópcô.   

Function Names 

Functions are prefixed with both the type they return, and the file they are defined within.  For 

example: 

¶ vTaskPrioritySet() returns a void and is defined within task.c. 

¶ xQueueReceive() returns a variable of type BaseType_t and is defined within queue.c. 

¶ pvTimerGetTimerID() returns a pointer to void and is defined within timers.c. 

File scope (private) functions are prefixed with óprvô. 

http://www.freertos.org/FreeRTOS-V9.html
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Formatting 

One tab is always set to equal four spaces. 

Macro Names 

Most macros are written in upper case, and prefixed with lower case letters that indicate where 

the macro is defined.  Table 3 provides a list of prefixes. 

Table 3.  Macro prefixes 

Prefix Location of macro definition 

port (for example, portMAX_DELAY) portable.h or 

portmacro.h 

task (for example, taskENTER_CRITICAL()) task.h 

pd (for example, pdTRUE) projdefs.h 

config (for example, configUSE_PREEMPTION) FreeRTOSConfig.h 

err (for example, errQUEUE_FULL) projdefs.h 

 

Note that the semaphore API is written almost entirely as a set of macros, but follows the 

function naming convention, rather than the macro naming convention. 

The macros defined in Table 4 are used throughout the FreeRTOS source code. 

 

Table 4.  Common macro definitions 

Macro Value 

pdTRUE 1 

pdFALSE 0 

pdPASS 1 

pdFAIL 0 
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Rationale for Excessive Type Casting 

The FreeRTOS source code can be compiled with many different compilers, all of which differ 

in how and when they generate warnings.  In particular, different compilers want casting to be 

used in different ways.  As a result, the FreeRTOS source code contains more type casting 

than would normally be warranted. 

  

http://www.freertos.org/FreeRTOS-V9.html
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Chapter 2   
 
Heap Memory Management 

 

 

From FreeRTOS V9.0.0 FreeRTOS applications can be completely statically allocated, 

removing the need to include a heap memory manager 
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2.1 Chapter Introduction and Scope  

Prerequisites 

FreeRTOS is provided as a set of C source files, so being a competent C programmer is a 

prerequisite for using FreeRTOS, and therefore this chapter assumes the reader is familiar 

with concepts such as: 

¶ How a C project is built, including the different compiling and linking phases. 

¶ What the stack and heap are. 

¶ The standard C library malloc() and free() functions. 

Dynamic Memory Allocation and its Relevance to FreeRTOS 

From FreeRTOS V9.0.0 kernel objects can be allocated statically at compile time, or dynamically at run time:  

Following chapters of this book will introduce kernel objects such as tasks, queues, 

semaphores and event groups.  To make FreeRTOS as easy to use as possible, these kernel 

objects are not statically allocated at compile-time, but dynamically allocated at run-time; 

FreeRTOS allocates RAM each time a kernel object is created, and frees RAM each time a 

kernel object is deleted.  This policy reduces design and planning effort, simplifies the API, and 

minimizes the RAM footprint. 

This chapter discusses dynamic memory allocation.  Dynamic memory allocation is a C 

programming concept, and not a concept that is specific to either FreeRTOS or multitasking.  It 

is relevant to FreeRTOS because kernel objects are allocated dynamically, and the dynamic 

memory allocation schemes provided by general purpose compilers are not always suitable for 

real-time applications. 

Memory can be allocated using the standard C library malloc() and free() functions, but they 

may not be suitable, or appropriate, for one or more of the following reasons: 

¶ They are not always available on small embedded systems. 

¶ Their implementation can be relatively large, taking up valuable code space. 

¶ They are rarely thread-safe. 

http://www.freertos.org/FreeRTOS-V9.html
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¶ They are not deterministic; the amount of time taken to execute the functions will differ 

from call to call. 

¶ They can suffer from fragmentation1.   

¶ They can complicate the linker configuration. 

¶ They can be the source of difficult to debug errors if the heap space is allowed to grow 

into memory used by other variables. 

Options for Dynamic Memory Allocation 

From FreeRTOS V9.0.0 kernel objects can be allocated statically at compile time, or dynamically at run time:  

Early versions of FreeRTOS used a memory pools allocation scheme, whereby pools of 

different size memory blocks were pre-allocated at compile time, then returned by the memory 

allocation functions.  Although this is a common scheme to use in real-time systems, it proved 

to be the source of many support requests, predominantly because it could not use RAM 

efficiently enough to make it viable for really small embedded systemsðso the scheme was 

dropped. 

FreeRTOS now treats memory allocation as part of the portable layer (as opposed to part of 

the core code base).  This is in recognition of the fact that different embedded systems have 

varying dynamic memory allocation and timing requirements, so a single dynamic memory 

allocation algorithm will only ever be appropriate for a subset of applications.  Also, removing 

dynamic memory allocation from the core code base enables application writerôs to provide 

their own specific implementations, when appropriate. 

When FreeRTOS requires RAM, instead of calling malloc(), it calls pvPortMalloc().  When 

RAM is being freed, instead of calling free(), the kernel calls vPortFree().  pvPortMalloc() has 

the same prototype as the standard C library malloc() function, and vPortFree() has the same 

prototype as the standard C library free() function. 

pvPortMalloc() and vPortFree() are public functions, so can also be called from application 

code. 

                                                

1 The heap is considered to be fragmented if the free RAM within the heap is broken up into small 
blocks that are separated from each other.  If the heap is fragmented, then an attempt to allocate a 
block will fail if no single free block in the heap is large enough to contain the block, even if the total size 
of all the separate free blocks in the heap is many times greater than the size of the block that cannot be 
allocated. 
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From FreeRTOS V9.0.0 kernel objects can be allocated statically at compile time, or dynamically at run time:  

FreeRTOS comes with five example implementations of both pvPortMalloc() and vPortFree(), 

all of which are documented in this chapter.  FreeRTOS applications can use one of the 

example implementations, or provide their own.  

The five examples are defined in the heap_1.c, heap_2.c, heap_3.c, heap_4.c and heap_5.c 

source files respectively, all of which are located in the FreeRTOS/Source/portable/MemMang 

directory.   

Scope 

This chapter aims to give readers a good understanding of: 

¶ When FreeRTOS allocates RAM. 

¶ The five example memory allocation schemes supplied with FreeRTOS. 

¶ Which memory allocation scheme to select. 

http://www.freertos.org/FreeRTOS-V9.html
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2.2 Example Memory Allocation Schemes  

From FreeRTOS V9.0.0 FreeRTOS applications can be completely statically allocated, removing the 
need to include a heap memory manager 

Heap_1 

It is common for small dedicated embedded systems to only create tasks and other kernel 

objects before the scheduler has been started.  When this is the case, memory only gets 

dynamically allocated by the kernel before the application starts to perform any real-time 

functionality, and the memory remains allocated for the lifetime of the application.  This means 

the chosen allocation scheme does not have to consider any of the more complex memory 

allocation issues, such as determinism and fragmentation, and can instead just consider 

attributes such as code size and simplicity. 

Heap_1.c implements a very basic version of pvPortMalloc(), and does not implement 

vPortFree().  Applications that never delete a task, or other kernel object, have the potential to 

use heap_1.   

Some commercially critical and safety critical systems that would otherwise prohibit the use of 

dynamic memory allocation also have the potential to use heap_1.  Critical systems often 

prohibit dynamic memory allocation because of the uncertainties associated with non-

determinism, memory fragmentation, and failed allocationsðbut Heap_1 is always 

deterministic, and cannot fragment memory. 

The heap_1 allocation scheme subdivides a simple array into smaller blocks, as calls to 

pvPortMalloc() are made.  The array is called the FreeRTOS heap.  

The total size (in bytes) of the array is set by the definition configTOTAL_HEAP_SIZE within 

FreeRTOSConfig.h.  Defining a large array in this manner can make the application appear to 

consume a lot of RAMðeven before any memory has been allocated from the array. 

Each created task requires a task control block (TCB) and a stack to be allocated from the 

heap.  Figure 5 demonstrates how heap_1 subdivides the simple array as tasks are created. 

Referring to Figure 5: 

¶ A shows the array before any tasks have been createdðthe entire array is free.  



161204 Pre-release for FreeRTOS V8.x.x.  See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS 
V9.x.x.  See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x. 

 

30  

 

¶ B shows the array after one task has been created.  

¶ C shows the array after three tasks have been created.  
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Figure 5.  RAM being allocated from the heap_1 array each time a task is created 

Heap_2 

Heap_2 is retained in the FreeRTOS distribution for backward compatibility, but its use is not 

recommended for new designs.  Consider using heap_4 instead of heap_2, as heap_4 

provides enhanced functionality. 

Heap_2.c also works by subdividing an array that is dimensioned by 

configTOTAL_HEAP_SIZE.  It uses a best fit algorithm to allocate memory and, unlike 

heap_1, it does allow memory to be freed.  Again, the array is statically declared, so will make 

the application appear to consume a lot of RAM, even before any memory from the array has 

been assigned. 

The best fit algorithm ensures that pvPortMalloc() uses the free block of memory that is closest 

in size to the number of bytes requested.  For example, consider the scenario where: 

¶ The heap contains three blocks of free memory that are 5 bytes, 25 bytes, and 100 

bytes, respectively. 

¶ pvPortMalloc() is called to request 20 bytes of RAM. 

The smallest free block of RAM into which the requested number of bytes will fit is the 25-byte 

block, so pvPortMalloc() splits the 25-byte block into one block of 20 bytes and one block of 5 
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bytes1, before returning a pointer to the 20-byte block.  The new 5-byte block remains 

available to future calls to pvPortMalloc(). 

Unlike heap_4, Heap_2 does not combine adjacent free blocks into a single larger block, so it 

is more susceptible to fragmentation.  However, fragmentation is not an issue if the blocks 

being allocated and subsequently freed are always the same size.  Heap_2 is suitable for an 

application that creates and deletes tasks repeatedly, provided the size of the stack allocated 

to the created tasks does not change. 
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Figure 6.  RAM being allocated and freed from the heap_2 array as tasks are created 
and deleted 

Figure 6 demonstrates how the best fit algorithm works when a task is created, deleted, and 

then created again.  Referring to Figure 6: 

1. A shows the array after three tasks have been created.  A large free block remains at 

the top of the array. 

2. B shows the array after one of the tasks has been deleted.  The large free block at the 

top of the array remains.  There are now also two smaller free blocks that were 

previously allocated to the TCB and stack of the deleted task. 

3. C shows the situation after another task has been created.  Creating the task has 

resulted in two calls to pvPortMalloc(), one to allocate a new TCB, and one to allocate 

the task stack.  Tasks are created using the xTaskCreate() API function, which is 

                                                

1 This is an oversimplification, because heap_2 stores information on the block sizes within the heap 
area, so the sum of the two split blocks will actually be less than 25. 
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described in section 3.4.  The calls to pvPortMalloc() occur internally within 

xTaskCreate(). 

Every TCB is exactly the same size, so the best fit algorithm ensures that the block of 

RAM previously allocated to the TCB of the deleted task is reused to allocate the TCB 

of the new task. 

The size of the stack allocated to the newly created task is identical to that allocated to 

the previously deleted task, so the best fit algorithm ensures that the block of RAM 

previously allocated to the stack of the deleted task is reused to allocate the stack of 

the new task. 

The larger unallocated block at the top of the array remains untouched. 

Heap_2 is not deterministic, but is faster than most standard library implementations of 

malloc() and free(). 

Heap_3 

Heap_3.c uses the standard library malloc() and free() functions, so the size of the heap is 

defined by the linker configuration, and the configTOTAL_HEAP_SIZE setting has no affect. 

Heap_3 makes malloc() and free() thread-safe by temporarily suspending the FreeRTOS 

scheduler.  Thread safety, and scheduler suspension, are both topics that are covered in 

Chapter 7, Resource Management. 

Heap_4 

Like heap_1 and heap_2, heap_4 works by subdividing an array into smaller blocks.  As 

before, the array is statically declared, and dimensioned by configTOTAL_HEAP_SIZE, so will 

make the application appear to consume a lot of RAM, even before any memory has actually 

been allocated from the array. 

Heap_4 uses a first fit algorithm to allocate memory.  Unlike heap_2, heap_4 combines 

(coalescences) adjacent free blocks of memory into a single larger block, which minimizes the 

risk of memory fragmentation. 

The first fit algorithm ensures pvPortMalloc() uses the first free block of memory that is large 

enough to hold the number of bytes requested.  For example, consider the scenario where: 
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¶ The heap contains three blocks of free memory that, in the order in which they appear 

in the array, are 5 bytes, 200 bytes, and 100 bytes, respectively. 

¶ pvPortMalloc() is called to request 20 bytes of RAM. 

The first free block of RAM into which the requested number of bytes will fit is the 200-byte 

block, so pvPortMalloc() splits the 200-byte block into one block of 20 bytes, and one block of 

180 bytes1, before returning a pointer to the 20-byte block.  The new 180-byte block remains 

available to future calls to pvPortMalloc(). 

Heap_4 combines (coalescences) adjacent free blocks into a single larger block, minimizing 

the risk of fragmentation, and making it suitable for applications that repeatedly allocate and 

free different sized blocks of RAM. 
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Figure 7.  RAM being allocated and freed from the heap_4 array 

Figure 7 demonstrates how the heap_4 first fit algorithm with memory coalescence works, as 

memory is allocated and freed.  Referring to Figure 7: 

1. A shows the array after three tasks have been created.  A large free block remains at 

the top of the array. 

2. B shows the array after one of the tasks has been deleted.  The large free block at the 

top of the array remains.  There is also a free block where the TCB and stack of the 

                                                

1 This is an oversimplification, because heap_4 stores information on the block sizes within the heap 
area, so the sum of the two split blocks will actually be less than 200 bytes. 
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task that has been deleted were previously allocated.  Note that, unlike when heap_2 

was demonstrated, the memory freed when the TCB was deleted, and the memory 

freed when the stack was deleted, does not remain as two separate free blocks, but is 

instead combined to create a larger single free block. 

3. C shows the situation after a FreeRTOS queue has been created.  Queues are created 

using the xQueueCreate() API function, which is described in section 4.3.  

xQueueCreate() calls pvPortMalloc() to allocate the RAM used by the queue.  As 

heap_4 uses a first fit algorithm, pvPortMalloc() will allocate RAM from the first free 

RAM block that is large enough to hold the queue, which in Figure 7, was the RAM 

freed when the task was deleted.  The queue does not consume all the RAM in the free 

block however, so the block is split into two, and the unused portion remains available 

to future calls to pvPortMalloc().  

4. D shows the situation after pvPortMalloc() has been called directly from application 

code, rather than indirectly by calling a FreeRTOS API function.  The user allocated 

block was small enough to fit in the first free block, which was the block between the 

memory allocated to the queue, and the memory allocated to the following TCB.   

The memory freed when the task was deleted has now been split into three separate 

blocks; the first block holds the queue, the second block holds the user allocated 

memory, and the third block remains free. 

5. E show the situation after the queue has been deleted, which automatically frees the 

memory that had been allocated to the deleted queue.  There is now free memory on 

either side of the user allocated block. 

6. F shows the situation after the user allocated memory has also been freed.  The 

memory that had been used by the user allocated block has been combined with the 

free memory on either side to create a larger single free block. 

Heap_4 is not deterministic, but is faster than most standard library implementations of 

malloc() and free(). 

Setting a Start Address for the Array Used By Heap_4 

This section contains advanced level information.  It is not necessary to read or understand 

this section in order to use Heap_4. 
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Sometimes it is necessary for an application writer to place the array used by heap_4 at a 

specific memory address.  For example, the stack used by a FreeRTOS task is allocated from 

the heap, so it might be necessary to ensure the heap is located in fast internal memory, 

rather than slow external memory.  

By default, the array used by heap_4 is declared inside the heap_4.c source file, and its start 

address is set automatically by the linker.  However, if the 

configAPPLICATION_ALLOCATED_HEAP compile time configuration constant is set to 1 in 

FreeRTOSConfig.h, then the array must instead be declared by the application that is using 

FreeRTOS.  If the array is declared as part of the application, then the applicationôs writer can 

set its start address. 

If configAPPLICATION_ALLOCATED_HEAP is set to 1 in FreeRTOSConfig.h, then a uint8_t 

array called ucHeap, and dimensioned by the configTOTAL_HEAP_SIZE setting, must be 

declared in one of the applicationôs source files.   

The syntax required to place a variable at a specific memory address is dependent on the 

compiler in use, so refer to your compilerôs documentation.  Examples for two compilers follow:   

¶ Listing 2 shows the syntax required by the GCC compiler to declare the array, and 

place the array in a memory section called .my_heap.   

¶ Listing 3 shows the syntax required by the IAR compiler to declare the array, and place 

the array at the absolute memory address 0x20000000. 

 

uint8_t ucHeap[ configTOTAL_HEAP_SIZE ] __attribute__ ( ( section( ".my_heap" ) ) );  

 

Listing 2.  Using GCC syntax to declare the array that will be used by heap_4, and 
place the array in a memory section named .my_heap 

 

uint8_t ucHeap[ configTOTAL_HEAP_SIZE ] @ 0x20000000 ;  

 

Listing 3.  Using IAR syntax to declare the array that will be used by heap_4, and 
place the array at the absolute address 0x20000000 

Heap_5 

The algorithm used by heap_5 to allocate and free memory is identical to that used by heap_4.  

Unlike heap_4, heap_5 is not limited to allocating memory from a single statically declared 

array; heap_5 can allocate memory from multiple and separated memory spaces.  Heap_5 is 
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useful when the RAM provided by the system on which FreeRTOS is running does not appear 

as a single contiguous (without space) block in the systemôs memory map. 

At the time of writing, heap_5 is the only provided memory allocation scheme that must be 

explicitly initialized before pvPortMalloc() can be called.  Heap_5 is initialized using the 

vPortDefineHeapRegions() API function.  When heap_5 is used, vPortDefineHeapRegions() 

must be called before any kernel objects (tasks, queues, semaphores, etc.) can be created.  

The vPortDefineHeapRegions() API Function 

vPortDefineHeapRegions() is used to specify the start address and size of each separate 

memory area that together makes up the total memory used by heap_5.  

 

void vPortDefineHeapRegions( const HeapRegion_t * const pxHeapRegions ) ;  

 

Listing 4.  The vPortDefineHeapRegions() API function prototype 

Each separate memory areas is described by a structure of type HeapRegion_t.  A description 

of all the available memory areas is passed into vPortDefineHeapRegions() as an array of 

HeapRegion_t structures. 

 

typedef struct HeapRegion  

{  

    /* The s tart address of a block of memory that will be part of the heap.*/  

    uint8_t *pucStartAddress;  

 

    /* The s ize of the block of memory  in bytes . */  

    size_t xSizeInBytes;  

 

} HeapRegion_t;  

 

Listing 5.  The HeapRegion_t structure 
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Table 5.  vPortDefineHeapRegions() parameters 

Parameter Name/ 
Returned Value 

Description 

pxHeapRegions A pointer to the start of an array of HeapRegion_t structures.  Each 

structure in the array describes the start address and length of a memory 

area that will be part of the heap when heap_5 is used. 

The HeapRegion_t structures in the array must be ordered by start 

address; the HeapRegion_t structure that describes the memory area 

with the lowest start address must be the first structure in the array, and 

the HeapRegion_t structure that describes the memory area with the 

highest start address must be the last structure in the array.   

The end of the array is marked by a HeapRegion_t structure that has its 

pucStartAddress member set to NULL. 

By way of example, consider the hypothetical memory map shown in Figure 8 A, which 

contains three separate blocks of RAM:  RAM1, RAM2 and RAM3.  It is assumed executable 

code is placed in read only memory, which is not shown. 
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Figure 8 Memory Map 
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Listing 6 shows an array of HeapRegion_t structures that together describe the three blocks of 

RAM in their entirety.   

 

/* Define the start address and size of the three RAM regions. */  

#define RAM1_START_ADDRESS    ( ( uint8_t * ) 0x00010000 )  

#define RAM1_SIZE              ( 65 * 1024 )  

 

#define RAM2 _START_ADDRESS    ( ( uint8_t * ) 0x00020000 )  

#define RAM2 _SIZE              ( 32 * 1024 )  

 

#define RAM3 _START_ADDRESS    ( ( uint8_t * ) 0x00030000 )  

#define RAM3 _SIZE              ( 32 * 1024 )  

 

/* Create an array of HeapRegion_t definitions, with an index for each of the three 

RAM regions, and terminating the array with a NULL address.  The HeapRegion_t 

structures must appear in start address order, with the structure that contains the 

lowest start address appearing f irst.  */  

const HeapRegion_t xHeapRegions[] =  

{  

    { RAM1_START_ADDRESS, RAM1_SIZE },  

    { RAM2_START_ADDRESS, RAM2_SIZE },  

    { RAM3_START_ADDRESS, RAM3_SIZE },  

    { NULL,               0         }  /* Marks the end of the array. */  

};  

 

int main( void )  

{  

    /* Initialize heap_5. */  

    vPortDefineHeapRegions ( xHeapRegions );  

 

    /* Add application code here. */  

}  

 

 

Listing 6.  An array of HeapRegion_t structures that together describe the 3 regions 
of RAM in their entirety 

While Listing 6 correctly describes the RAM, it does not demonstrate a usable example, 

because it allocates all the RAM to the heap, leaving no RAM free for use by other variables. 

When a project is built, the linking phase of the build process allocates a RAM address to each 

variable.  The RAM available for use by the linker is normally described by a linker 

configuration file, such as a linker script.  In Figure 8 B it is assumed the linker script included 

information on RAM1, but did not include information on RAM2 or RAM3.  The linker has 

therefore placed variables in RAM1, leaving only the portion of RAM1 above address 

0x0001nnnn available for use by heap_5.  The actual value of 0x0001nnnn will depend on the 

combined size of all the variables included in the application being linked.  The linker has left 

all of RAM2 and all of RAM3 unused, leaving the whole of RAM2 and the whole of RAM3 

available for use by heap_5. 
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If the code shown in Listing 6 was used, the RAM allocated to heap_5 below address 

0x0001nnnn would overlap the RAM used to hold variables.  To avoid that, the first 

HeapRegion_t structure within the xHeapRegions[] array could use a start address of 

0x0001nnnn, rather than a start address of 0x00010000.  However, that is not a recommended 

solution because: 

1. The start address might not be easy to determine. 

2. The amount of RAM used by the linker might change in future builds, necessitating an 

update to the start address used in the HeapRegion_t structure. 

3. The build tools will not know, and therefore cannot warn the application writer, if the 

RAM used by the linker and the RAM used by heap_5 overlap. 

Listing 7 demonstrates a more convenient and maintainable example.  It declares an array 

called ucHeap.  ucHeap is a normal variable, so it becomes part of the data allocated to RAM1 

by the linker.  The first HeapRegion_t structure in the xHeapRegions array describes the start 

address and size of ucHeap, so ucHeap becomes part of the memory managed by heap_5.  

The size of ucHeap can be increased until the RAM used by the linker consumes all of RAM1, 

as shown in Figure 8 C. 

 

/* Define the start address and size of the two RAM regions  not used by the  

linker . */  

#define RAM2 _START_ADDRESS    ( ( uint8_t * ) 0x00020000 )  

#define RAM2 _SIZE              ( 32 * 1024 )  

 

#define RAM3 _START_ADDRESS    ( ( uint8_t * ) 0x00030000 )  

#define RAM3 _SIZE              ( 32 * 1024 )  

 

/* Declare an array that will be part of the heap used by heap_5.  The array will be 

placed in RAM1 by the linker. */  

#define RAM1_HEAP_SIZE ( 30 * 1024 )  

static uint8_t ucHeap[ RAM1_HEAP_SIZE ];  

 

/* Create an a rray of HeapRegion_t definitions.  Whereas in Listing 6  the first entry 

described all of RAM1, so heap_5 will have used all of RAM1, this time the first 

entry only describes the ucHeap array, so heap_5 will only use the part of RAM1 that 

contains the ucHea p array.  The HeapRegion_t structures must still appear in start 

address order, with the structure that contains the lowest start address appearing 

first.  */  

const HeapRegion_t xHeapRegions[] =  

{  

    { ucHeap,             RAM1_HEAP_SIZE },  

    { RAM2_START_ADDRESS, RAM2_SIZE },  

    { RAM3_START_ADDRESS, RAM3_SIZE },  

    { NULL,               0         }  /* Marks the end of the array. */  

};  

 

Listing 7.  An array of HeapRegion_t structures that describe all of RAM2, all of 
RAM3, but only part of RAM1 
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The advantages of the technique demonstrated in Listing 7 include: 

1. It is not necessary to use a hard coded start address. 

2. The address used in the HeapRegion_t structure will be set automatically, by the 

linker, so will always be correct, even if the amount of RAM used by the linker changes 

in future builds. 

3. It is not possible for RAM allocated to heap_5 to overlap data placed into RAM1 by the 

linker. 

4. The application will not link if ucHeap is too big. 
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2.3 Heap Related Utility Functions  

The xPortGetFreeHeapSize() API Function 

The xPortGetFreeHeapSize() API function returns the number of free bytes in the heap at the 

time the function is called.  It can be used to optimize the heap size.  For example, if 

xPortGetFreeHeapSize() returns 2000 after all the kernel objects have been created, then the 

value of configTOTAL_HEAP_SIZE can be reduced by 2000. 

xPortGetFreeHeapSize() is not available when heap_3 is used.   

 

size_t xPortGetFreeHeapSize( void );  

 

Listing 8.  The xPortGetFreeHeapSize() API function prototype 

 

Table 6.  xPortGetFreeHeapSize() return value 

Parameter Name/ 
Returned Value 

Description 

Returned value The number of bytes that remain unallocated in the heap at the time 

xPortGetFreeHeapSize() is called. 

The xPortGetMinimumEverFreeHeapSize() API Function 

The xPortGetMinimumEverFreeHeapSize() API function returns the minimum number of 

unallocated bytes that have ever existed in the heap since the FreeRTOS application started 

executing.  

The value returned by xPortGetMinimumEverFreeHeapSize() is an indication of how close the 

application has ever come to running out of heap space.  For example, if 

xPortGetMinimumEverFreeHeapSize() returns 200, then, at some time since the application 

started executing, it came within 200 bytes of running out of heap space. 

xPortGetMinimumEverFreeHeapSize() is only available when heap_4 or heap_5 is used.   

 

size_t xPortGetMinimumEverFreeHeapSize ( void );  

 

Listing 9.  The xPortGetMinimumEverFreeHeapSize() API function prototype 
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Table 7.  xPortGetMinimumEverFreeHeapSize() return value 

Parameter Name/ 
Returned Value 

Description 

Returned value The minimum number of unallocated bytes that have existed in the 

heap since the FreeRTOS application started executing. 

Malloc Failed Hook Functions 

pvPortMalloc() can be called directly from application code.  It is also called within FreeRTOS 

source files each time an kernel object is created.  Examples of kernel objects include tasks, 

queues, semaphores, and event groupsðall of which are described in later chapters of this 

book. 

Just like the standard library malloc() function, if pvPortMalloc() cannot return a block of RAM 

because a block of the requested size does not exist, then it will return NULL.  If 

pvPortMalloc() is executed because the application writer is creating a kernel object, and the 

call to pvPortMalloc() returns NULL, then the kernel object will not be created. 

All the example heap allocation schemes can be configured to call a hook (or callback) 

function if a call to pvPortMalloc() returns NULL.   

If configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h, then the application 

must provide a malloc failed hook function that has the name and prototype shown by Listing 

10.  The function can be implemented in any way that is appropriate for the application. 

 

void vApplication MallocFailed Hook( void );  

 

Listing 10.  The malloc failed hook function name and prototype.  
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Chapter 3   
 
Task Management 

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html


 

 
 45 

 

3.1 Chapter Introduction and Scope  

Scope 

This chapter aims to give readers a good understanding of: 

¶ How FreeRTOS allocates processing time to each task within an application. 

¶ How FreeRTOS chooses which task should execute at any given time. 

¶ How the relative priority of each task affects system behavior. 

¶ The states that a task can exist in. 

Readers should also gain a good understanding of: 

¶ How to implement tasks. 

¶ How to create one or more instances of a task. 

¶ How to use the task parameter. 

¶ How to change the priority of a task that has already been created. 

¶ How to delete a task. 

¶ How to implement periodic processing using a task (software timers are discussed in a 

later chapter). 

¶ When the idle task will execute and how it can be used. 

The concepts presented in this chapter are fundamental to understanding how to use 

FreeRTOS, and how FreeRTOS applications behave.  This is, therefore, the most detailed 

chapter in the book. 
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3.2 Task Functions  

Tasks are implemented as C functions.  The only thing special about them is their prototype, 

which must return void and take a void pointer parameter.  The prototype is demonstrated by 

Listing 11. 

 

void ATaskFunction( void *pvParameters );  

 

Listing 11.  The task function prototype 

Each task is a small program in its own right.  It has an entry point, will normally run forever 

within an infinite loop, and will not exit.  The structure of a typical task is shown in Listing 12. 

FreeRTOS tasks must not be allowed to return from their implementing function in any wayð

they must not contain a óreturnô statement and must not be allowed to execute past the end of 

the function.  If a task is no longer required, it should instead be explicitly deleted.  This is also 

demonstrated in Listing 12. 

A single task function definition can be used to create any number of tasksðeach created task 

being a separate execution instance, with its own stack and its own copy of any automatic 

(stack) variables defined within the task itself. 
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void ATaskFunction( void *pvParame ters )  

{  

/* Variables can be declared just as per a normal function.  Each instance  of a task 

created using this exampl e function will have its own copy of the  l VariableExample 

variable.  This would not be true if the variable was  declared static  ï in which case 

only one copy of the variable would exist ,  and this copy would be shared by each  

created instance of the task . (The  prefixes added to variable names are described in 

section 1.5, Data Types and Coding Style Guide .) */  

int32_t l VariableExample = 0;  

 

    /* A task will normally be implemented as an infinite loop. */  

    for( ;; )  

    {  

        /* The code to implement the task functionality  will go here. */  

    }  

 

    /* Should the task implementation ever break out of the above loop ,  then the task  

    must be deleted before reaching the end of its implementing  function.   The NULL  

    par ameter passed to the vTaskDelete() API function indicates that the task to be  

    deleted is the calling (this) task .   The convention used to name API functions is  

    described in section 0, Projects that use a FreeRTOS version  older than V9.0.0 

must build one of the  heap_n.c file s.   From Fr eeRTOS V9.0.0 a heap_n.c file is only 

required if configSUPPOR T_DYNAMIC_ALLOCATION is set to 1 in FreeRTOSConfig.h  or if 

configSUPPORT_DYNAMIC_ALLOCATION is left undefined .  Refer to Chapter 2 , Heap Memory 

Management , for more information.  

Data Types and Coding Style Guide . */  

    vTaskDelete( NULL );  

}  

 

Listing 12.  The structure of a typical task function 
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3.3 Top Level Task States  

An application can consist of many tasks.  If the processor running the application contains a 

single core, then only one task can be executing at any given time.  This implies that a task 

can exist in one of two states, Running and Not Running.  This simplistic model is considered 

firstðbut keep in mind that it is an over simplification.  Later in the chapter it is shown that the 

Not Running state actually contains a number of sub-states. 

When a task is in the Running state the processor is executing the taskôs code.  When a task 

is in the Not Running state, the task is dormant, its status having been saved ready for it to 

resume execution the next time the scheduler decides it should enter the Running state.  

When a task resumes execution, it does so from the instruction it was about to execute before 

it last left the Running state. 

Not RunningNot RunningNot Running Running

All tasks that are

not currently

Running are in the

Not Running state

Only one task

can be in the

Running state at

any one time

 

Figure 9.  Top level task states and transitions 

A task transitioned from the Not Running state to the Running state is said to have been 

óswitched inô or óswapped inô.  Conversely, a task transitioned from the Running state to the Not 

Running state is said to have been óswitched outô or óswapped outô.  The FreeRTOS scheduler 

is the only entity that can switch a task in and out.  
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3.4 Creating Tasks  

The xTaskCreate() API Function 

FreeRTOS V9.0.0 also includes the xTaskCreateStatic() function, which allocates the memory required to create a 

task statically at compile time:  Tasks are created using the FreeRTOS xTaskCreate() API function.  

This is probably the most complex of all the API functions, so it is unfortunate that it is the first 

encountered, but tasks must be mastered first as they are the most fundamental component of 

a multitasking system.  All the examples that accompany this book make use of the 

xTaskCreate() function, so there are plenty of examples to reference. 

Section 1.5, Data Types and Coding Style Guide, describes the data types and naming 

conventions used. 

 

BaseType_t  xTaskCreate( TaskFunction_t  pvTaskCode,  

                        const char  * const pcName,  

                        uint16_t  usStackDepth,  

                        void *pvParameters,  

                        UBaseType_t  uxPriority,  

                        TaskHandle_t  *pxCreatedTask  );  

 

Listing 13.  The xTaskCreate() API function prototype 

Table 8.  xTaskCreate() parameters and return value 

Parameter Name/ 
Returned Value 

Description 

pvTaskCode Tasks are simply C functions that never exit and, as such, are normally 

implemented as an infinite loop.  The pvTaskCode parameter is simply a 

pointer to the function that implements the task (in effect, just the name 

of the function). 



161204 Pre-release for FreeRTOS V8.x.x.  See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS 
V9.x.x.  See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x. 

 

50  

 

Table 8.  xTaskCreate() parameters and return value 

Parameter Name/ 
Returned Value 

Description 

pcName A descriptive name for the task.  This is not used by FreeRTOS in any 

way.  It is included purely as a debugging aid.  Identifying a task by a 

human readable name is much simpler than attempting to identify it by 

its handle. 

The application-defined constant configMAX_TASK_NAME_LEN 

defines the maximum length a task name can takeðincluding the NULL 

terminator.  Supplying a string longer than this maximum will result in 

the string being silently truncated. 
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Table 8.  xTaskCreate() parameters and return value 

Parameter Name/ 
Returned Value 

Description 

usStackDepth Each task has its own unique stack that is allocated by the kernel to the 

task when the task is created.  The usStackDepth value tells the kernel 

how large to make the stack.  

The value specifies the number of words the stack can hold, not the 

number of bytes.  For example, if the stack is 32-bits wide and 

usStackDepth is passed in as 100, then 400 bytes of stack space will be 

allocated (100 * 4 bytes).  The stack depth multiplied by the stack width 

must not exceed the maximum value that can be contained in a variable 

of type uint16_t. 

The size of the stack used by the Idle task is defined by the application-

defined constant configMINIMAL_STACK_SIZE1.  The value assigned 

to this constant in the FreeRTOS demo application for the processor 

architecture being used is the minimum recommended for any task.  If 

your task uses a lot of stack space, then you must assign a larger value.   

There is no easy way to determine the stack space required by a task.  

It is possible to calculate, but most users will simply assign what they 

think is a reasonable value, then use the features provided by 

FreeRTOS to ensure that the space allocated is indeed adequate, and 

that RAM is not being wasted unnecessarily.  Section 12.3, Stack 

Overflow, contains information on how to query the maximum stack 

space that has actually been used by a task. 

pvParameters Task functions accept a parameter of type pointer to void ( void* ).  The 

value assigned to pvParameters is the value passed into the task.  

Some examples in this book demonstrate how the parameter can be 

used. 

                                                

1 This is the only way the FreeRTOS source code uses the configMINIMAL_STACK_SIZE setting, 
although the constant is also used inside demo applications to help make the demos portable across 
multiple processor architectures. 
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Table 8.  xTaskCreate() parameters and return value 

Parameter Name/ 
Returned Value 

Description 

uxPriority Defines the priority at which the task will execute.  Priorities can be 

assigned from 0, which is the lowest priority, to 

(configMAX_PRIORITIES ï 1), which is the highest priority.  

configMAX_PRIORITIES is a user defined constant that is described in 

section 3.5. 

Passing a uxPriority value above (configMAX_PRIORITIES ï 1) will 

result in the priority assigned to the task being capped silently to the 

maximum legitimate value. 

pxCreatedTask pxCreatedTask can be used to pass out a handle to the task being 

created.  This handle can then be used to reference the task in API calls 

that, for example, change the task priority or delete the task. 

If your application has no use for the task handle, then pxCreatedTask 

can be set to NULL. 

Returned value There are two possible return values: 

1. pdPASS 

This indicates that the task has been created successfully. 

2. pdFAIL 

This indicates that the task has not been created because there is 

insufficient heap memory available for FreeRTOS to allocate enough 

RAM to hold the task data structures and stack. 

Chapter 2 provides more information on heap memory 

management. 

Example 1. Creating tasks 

This example demonstrates the steps needed to create two simple tasks, then start the tasks 

executing.  The tasks simply print out a string periodically, using a crude null loop to create the 
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period delay.  Both tasks are created at the same priority, and are identical except for the 

string they print outðsee Listing 14 and Listing 15 for their respective implementations. 

 

void vTask1( void *pvParameters )  

{  

const char * pcTaskName = "Task 1 is running \ r \ n";  

volatile uint32_t  ul;  /* volatile to ensure ul is not optimized away. */  

 

    /* As per most tasks, this task is implemented in an infinite loop. */  

    for( ;; )  

    {  

        /* Print out the name of this task. */  

        vPrintString( pcTaskName );  

 

        /* Delay for a period. */  

        for( ul = 0; ul < mainDELAY_LOOP_COUNT; ul++ )  

        {  

            /* This loop is just a very crude delay implementation.  There is  

            nothing to do in here.  Later examples  will replace this crude  

            loop with a proper delay/sleep function. */  

        }  

    }  

}  

 

Listing 14.  Implementation of the first task used in Example 1 

 

void vTask2( void *pvParameters )  

{  

const char *pcTaskName = "Task 2 is running \ r \ n";  

volatile uint32_t  ul;  /* volatile to ensure ul is not optimized away. */  

 

    /* As per most tasks, this task is implemented in an infinite loop. */  

    for( ;; )  

    {  

        /* Print out the name of this task. */  

        vPrintString( pcTaskName );  

 

        /* Delay for a period. */  

        for( ul = 0; ul < mainDELAY_LOOP_CO UNT; ul++ )  

        {  

            /* This loop is just a very crude delay implementation.  There is  

            nothing to do in here.  Later examples  will replace this crude  

            loop with a proper delay/sleep function. */  

        }  

    }  

}  

 

Listing 15.  Implementation of the second task used in Example 1 

The main() function creates the tasks before starting the schedulerðsee Listing 16 for its 

implementation. 
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int main( void )  

{  

    /* Create one of the two tasks.  Note that a real application should check  

    the return val ue of the xTaskCreate() call to ensure the task was created  

    successfully. */  

    xTaskCreate(    vTask1,   /* Pointer to the function that implements the task. */  

                    " Task 1", /* Text name for the task .  This is to facilitate  

                             debugging only. */  

                    1000,    /* Stack depth -  small microcontrollers will use much 

                             less stack than this. */  

                    NULL,    /* This example does not use the  task para meter. */  

                    1,       /* This task will run at priority 1 . */  

                    NULL );  /* This example does not use the task handle. */  

 

    /* Create the other task in exactly the same way  and at the same priority . */  

    xTaskCreate(  vTask2, "Task 2", 1000, NULL, 1 , NULL );  

 

    /* Start the scheduler so the  tasks start executing. */  

    vTaskStartScheduler();     

     

    /* If all is well then main() will never reach here as the scheduler will  

    now be  running  the tasks .  If main() does reach  here then it is likely that  

    there was insufficient heap memory available for the idle  task  to be created.  

    Chapter 2  pro vides more information on heap memory management. */  

    for( ;; );  

}  

 

Listing 16.  Starting the Example 1 tasks 

Executing the example produces the output shown in Figure 10. 

 

Figure 10.  The output produced when Example 1 is executed1 

                                                

1 The screen shot shows each task printing out its message exactly once before the next task executes.  
This is an artificial scenario that results from using the FreeRTOS Windows simulator.  The Windows 
simulator is not truly real time.  Also writing to the Windows console takes a relatively long time and 
results in a chain of Windows system calls.  Executing the same code on a genuine embedded target 
with a fast and non-blocking print function may result in each task printing its string many times before 
being switched out to allow the other task to run. 
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Figure 10 shows the two tasks appearing to execute simultaneously; however, as both tasks 

are executing on the same processor core, this cannot be the case.  In reality, both tasks are 

rapidly entering and exiting the Running state.  Both tasks are running at the same priority, 

and so share time on the same processor core.  Their actual execution pattern is shown in 

Figure 11.  

The arrow along the bottom of Figure 11 shows the passing of time from time t1 onwards.  The 

colored lines show which task is executing at each point in timeðfor example, Task 1 is 

executing between time t1 and time t2. 

Only one task can exist in the Running state at any one time.  So, as one task enters the 

Running state (the task is switched in), the other enters the Not Running state (the task is 

switched out). 

Time

Task 1

Task 2

t1 t2

At time t1, Task 1

enters the Running

state and executes

until time t2

t3

At time t2 Task 2 enters the Running

state and executes until time t3 - at

which point Task1 re-enters the

Running state

 

Figure 11.  The actual execution pattern of the two Example 1 tasks 

Example 1 created both tasks from within main(), prior to starting the scheduler.  It is also 

possible to create a task from within another task.  For example, Task 2 could have been 

created from within Task 1, as shown by Listing 17. 
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void vTask1( void *pvPa rameters )  

{  

const char *pcTaskName = "Task 1 is running \ r \ n";  

volatile uint32_t  ul;  /* volatile to ensure ul is not optimized away. */  

 

    /* If this task code is executing then the scheduler must already have  

    been started.  Create the other task before enter ing  the infinite loop. */  

    xTaskCreate( vTask2, "Task 2", 1000, NULL, 1, NULL );  

 

    for( ;; )  

    {  

        /* Print out the name of this task. */  

        vPrintString( pcTaskName );  

 

        /* Del ay for a period. */  

        for( ul = 0; ul < mainDELAY_LOOP_COUNT; ul++ )  

        {  

            /* This loop is just a very crude delay implementation.  There is  

            nothing to do in here.  Later examples  will replace this crude  

            loop with a proper delay/sleep function. */  

        }  

    }  

}  

 

Listing 17.  Creating a task from within another task after the scheduler has started 

Example 2. Using the task parameter 

The two tasks created in Example 1 are almost identical, the only difference between them 

being the text string they print out.  This duplication can be removed by, instead, creating two 

instances of a single task implementation.  The task parameter can then be used to pass into 

each task the string that it should print out.  

Listing 18 contains the code of the single task function (vTaskFunction) used by Example 2.  

This single function replaces the two task functions (vTask1 and vTask2) used in Example 1.  

Note how the task parameter is cast to a char * to obtain the string the task should print out. 
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void vTaskFunction( void *pvParameters )  

{  

char *pcTaskName;  

volatile uint32_t  ul;  /* volatile to ensure ul is not optimized away. */  

 

    /* The string to print out is passed in via the parameter.  Cast this to a  

    character pointe r. */  

    pcTaskName = ( char * ) pvParameters;  

 

    /* As per most tasks, this task is implemented in an infinite loop. */  

    for( ;; )  

    {  

        /* Print out the name of this task. */  

        vPrintString( pcTaskName );  

 

        /*  Delay for a perio d. */  

        for( ul = 0; ul < mainDELAY_LOOP_COUNT; ul++ )  

        {  

            /* This loop is just a very crude delay implementation.  There is  

            nothing to do in here.  Later exercises will replace this crude  

            loop with a proper delay/sleep function. */  

        }  

    }  

}  

 

Listing 18.  The single task function used to create two tasks in Example 2 

Even though there is now only one task implementation (vTaskFunction), more than one 

instance of the defined task can be created.  Each created instance will execute independently 

under the control of the FreeRTOS scheduler. 

Listing 19 shows how the pvParameters parameter to the xTaskCreate() function is used to 

pass the text string into the task. 
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/* Define the strings that will be passed  in as the task parameters.  These are  

defined const and not on  the stack to ensure they remain valid when the tasks are  

executing. */  

static const char *pcTextForTask1 = " Task 1 is running \ r \ n" ;  

static const char *pcTextForTask2 = " Task 2 is running \ r \ n" ;  

 

int main( void )  

{  

    /* Create one of the two tasks. */  

    xTaskCreate(    vTaskFunction,          /* Pointer to the function that  

                                            implements the task. * /  

                    "Task 1",               /* Text name for the task.  This is to  

                                            facilitate debugging only. */  

                    1000,                   /* Stack depth -  small microcontrollers  

                                            will use much less stack  than this. */  

                    (void*)pcTextForTask1 ,   /*  Pass the text to be printed into the  

                                            task using the task parameter . */  

                    1,                      /* This task will run at priority 1. */  

                    NULL );                 /* The task handle is not used in this  

                                            example . */  

 

    /* Create the other task in  exactly the same way.  Note this time that multiple  

    tasks are being created from the SAME task  implementation (vTaskFunction) .  Only  

    the  value passed in the parameter is different.   Two instances of the same  

    task are being created. */  

    xTaskCreate( vTaskFunction, "Task 2", 1000, (void*)pcTextForTask2 , 1, NULL );  

 

    /* Start the scheduler so the  tasks start executing. */  

    vTaskStartScheduler();     

     

    /* If all is well then main() will never reach here as the scheduler will  

    now be running the tasks.  If main() does reach here then it is likely that  

    there was insufficient heap memory available for the idle task to be created.  

    Chapter  2 provides more information on heap memory management. */  

    for( ;; );  

}  

 

Listing 19.  The main() function for Example 2. 

The output from Example 2 is exactly as per that shown for example 1 in Figure 10. 
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3.5 Task Priorities  

The uxPriority parameter of the xTaskCreate() API function assigns an initial priority to the task 

being created.  The priority can be changed after the scheduler has been started by using the 

vTaskPrioritySet() API function. 

The maximum number of priorities available is set by the application-defined 

configMAX_PRIORITIES compile time configuration constant within FreeRTOSConfig.h.  Low 

numeric priority values denote low-priority tasks, with priority 0 being the lowest priority 

possible.  Therefore, the range of available priorities is 0 to (configMAX_PRIORITIES ï 1).  

Any number of tasks can share the same priorityðensuring maximum design flexibility. 

The FreeRTOS scheduler can use one of two methods to decide which task will be in the 

Running state.  The maximum value to which configMAX_PRIORITIES can be set depends on 

the method used: 

1. Generic Method 

The generic method is implemented in C, and can be used with all the FreeRTOS 

architecture ports. 

When the generic method is used, FreeRTOS does not limit the maximum value to 

which configMAX_PRIORITIES can be set.  However, it is always advisable to keep 

the configMAX_PRIORITIES value at the minimum necessary, because the higher its 

value, the more RAM will be consumed, and the longer the worst case execution time 

will be. 

The generic method will be used if 

configUSE_PORT_OPTIMISED_TASK_SELECTION is set to 0 in FreeRTOSConfig.h, 

or if configUSE_PORT_OPTIMISED_TASK_SELECTION is left undefined, or if the 

generic method is the only method provided for the FreeRTOS port in use. 

2. Architecture Optimized Method 

The architecture optimized method uses a small amount of assembler code, and is 

faster than the generic method.  The configMAX_PRIORITIES setting does not affect 

the worst case execution time.   
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If the architecture optimized method is used then configMAX_PRIORITIES cannot be 

greater than 32.  As with the generic method, it is advisable to keep 

configMAX_PRIORITIES at the minimum necessary, as the higher its value, the more 

RAM will be consumed. 

The architecture optimized method will be used if 

configUSE_PORT_OPTIMISED_TASK_SELECTION is set to 1 in FreeRTOSConfig.h.   

Not all FreeRTOS ports provide an architecture optimized method. 

The FreeRTOS scheduler will always ensure that the highest priority task that is able to run is 

the task selected to enter the Running state.  Where more than one task of the same priority is 

able to run, the scheduler will transition each task into and out of the Running state, in turn.   
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3.6 Time Measurement  and the Tick Interrupt  

Section 3.12, Scheduling Algorithms, describes an optional feature called ótime slicingô.  Time 

slicing was used in the examples presented so far, and is the behavior observed in the output 

they produced.  In the examples, both tasks were created at the same priority, and both tasks 

were always able to run.  Therefore, each task executed for a ótime sliceô, entering the Running 

state at the start of a time slice, and exiting the Running state at the end of a time slice.  In 

Figure 11, the time between t1 and t2 equals a single time slice. 

To be able to select the next task to run, the scheduler itself must execute at the end of each 

time slice1.  A periodic interrupt, called the ótick interruptô, is used for this purpose.  The length 

of the time slice is effectively set by the tick interrupt frequency, which is configured by the 

application-defined configTICK_RATE_HZ compile time configuration constant within 

FreeRTOSConfig.h.  For example, if configTICK_RATE_HZ is set to 100 (Hz), then the time 

slice will be 10 milliseconds.  The time between two tick interrupts is called the ótick periodô.  

One time slice equals one tick period.   

Figure 11 can be expanded to show the execution of the scheduler itself in the sequence of 

execution.  This is shown in Figure 12, in which the top line shows when the scheduler is 

executing, and the thin arrows show the sequence of execution from a task to the tick 

interrupt, then from the tick interrupt back to a different task. 

The optimal value for configTICK_RATE_HZ is dependent on the application being developed, 

although a value of 100 is typical. 

 

 

 

                                                

1 It is important to note that the end of a time slice is not the only place that the scheduler can select a 
new task to run; as will be demonstrated throughout this book, the scheduler will also select a new task 
to run immediately after the currently executing task enters the Blocked state, or when an interrupt 
moves a higher priority task into the Ready state. 
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Task 1

Task 2

t1 t2 t3

Kernel

Tick

interrupt

occurs

Kernel runs in tick

interrupt to select

next task

Newly selected task runs when

the tick interrupt completes

 

Figure 12.  The execution sequence expanded to show the tick interrupt  executing 

FreeRTOS API calls always specify time in multiples of tick periods, which are often referred to 

simply as óticksô.  The pdMS_TO_TICKS() macro converts a time specified in milliseconds into 

a time specified in ticks.  The resolution available depends on the defined tick frequency, and 

pdMS_TO_TICKS() cannot be used if the tick frequency is above 1KHz (if 

configTICK_RATE_HZ is greater than 1000).  Listing 20 shows how to use pdMS_TO_TICKS() 

to convert a time specified as 200 milliseconds into an equivalent time specified in ticks. 

 

/* pdMS_TO_TICKS() takes a time in milliseconds as its only parameter, and evaluates  

to the equivalent time in tick periods . This example shows xTimeInTicks being set to 

the number of tick periods that are equivalent to 200 milliseconds. */  

TickType_t xTimeIn Ticks = pdMS_TO_TICKS( 200 );  

 

Listing 20.  Using the pdMS_TO_TICKS() macro to convert 200 milliseconds into an 
equivalent time in tick periods 

Note: It is not recommended to specify times in ticks directly within the application, but instead 

to use the pdMS_TO_TICKS() macro to specify times in milliseconds, and in so doing, 

ensuring times specified within the application do not change if the tick frequency is changed.   

The ótick countô value is the total number of tick interrupts that have occurred since the 

scheduler was started, assuming the tick count has not overflowed.  User applications do not 

have to consider overflows when specifying delay periods, as time consistency is managed 

internally by FreeRTOS. 
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Section 3.12, Scheduling Algorithms, describes configuration constants that affect when the 

scheduler will select a new task to run, and when a tick interrupt will execute. 

Example 3. Experimenting with priorities 

The scheduler will always ensure that the highest priority task that is able to run is the task 

selected to enter the Running state.  In our examples so far, two tasks have been created at 

the same priority, so both entered and exited the Running state in turn.  This example looks at 

what happens when the priority of one of the two tasks created in Example 2 is changed.  This 

time, the first task will be created at priority 1, and the second at priority 2.  The code to create 

the tasks is shown in Listing 21.  The single function that implements both tasks has not 

changed; it still simply prints out a string periodically, using a null loop to create a delay. 

 

/* Define the strings that will be passed in as the task parameters.  These are  

defined const and not on the stack to ensure they remain valid when the tasks are  

executing. */  

static const char *pcTextForTask1 = " Task 1 is running \ r \ n" ;  

static const char *pcTextForTask2 = " Task 2 is running \ r \ n" ;  

 

int main( void )  

{  

    /* Create the first task at priority 1 .  The priority is the second to last  

    parameter . */  

    xTaskCreate( vTask Function, "Task 1", 1000, (void*)pcTextForTask1 , 1, NULL );  

 

    /* Create the second task at priority 2 , which is higher than a priority of 1 .  

    The priority is the second to last parameter. */  

    xTaskCreate( vTaskFunction, "Task 2", 1000, (void*)pcTe xtForTask2 , 2, NULL );  

 

    /* Start the scheduler so the  tasks start executing. */  

    vTaskStartScheduler();     

     

    /* Will not reach here. */  

    return 0;  

}  

 

Listing 21.  Creating two tasks at different priorities 

The output produced by Example 3 is shown in Figure 13.  

The scheduler will always select the highest priority task that is able to run.  Task 2 has a 

higher priority than Task 1 and is always able to run; therefore, Task 2 is the only task to ever 

enter the Running state.  As Task 1 never enters the Running state, it never prints out its 

string.  Task 1 is said to be óstarvedô of processing time by Task 2.  
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Figure 13.  Running both tasks at different priorities 

Task 2 is always able to run because it never has to wait for anythingðit is either cycling 

around a null loop, or printing to the terminal.   

Figure 14 shows the execution sequence for Example 3. 

Task 1

Task 2

t1 t2 t3

Kernel

Tick

interrupt

occurs

The scheduler runs in the tick interrupt

but selects the same task.  Task 2 is

always in the Running state and Task 1 is

always in the Not Running state

 

Figure 14.  The execution pattern when one task has a higher priority than the other 
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3.7 Expanding  the óNot Running ô State  

So far, the created tasks have always had processing to perform and have never had to wait 

for anythingðas they never have to wait for anything, they are always able to enter the 

Running state.  This type of ócontinuous processingô task has limited usefulness, because they 

can only be created at the very lowest priority.  If they run at any other priority, they will prevent 

tasks of lower priority ever running at all.  

To make the tasks useful they must be re-written to be event-driven.  An event-driven task has 

work (processing) to perform only after the occurrence of the event that triggers it, and is not 

able to enter the Running state before that event has occurred.  The scheduler always selects 

the highest priority task that is able to run.  High priority tasks not being able to run means that 

the scheduler cannot select them and must, instead, select a lower priority task that is able to 

run.  Therefore, using event-driven tasks means that tasks can be created at different priorities 

without the highest priority tasks starving all the lower priority tasks of processing time. 

The Blocked State 

A task that is waiting for an event is said to be in the óBlockedô state, which is a sub-state of the 

Not Running state.  

Tasks can enter the Blocked state to wait for two different types of event: 

1. Temporal (time-related) eventsðthe event being either a delay period expiring, or an 

absolute time being reached.  For example, a task may enter the Blocked state to wait 

for 10 milliseconds to pass. 

2. Synchronization eventsðwhere the events originate from another task or interrupt.  For 

example, a task may enter the Blocked state to wait for data to arrive on a queue.  

Synchronization events cover a broad range of event types. 

FreeRTOS queues, binary semaphores, counting semaphores, mutexes, recursive mutexes, 

event groups and direct to task notifications can all be used to create synchronization events.  

All these features are covered in future chapters of this book. 

It is possible for a task to block on a synchronization event with a timeout, effectively blocking 

on both types of event simultaneously.  For example, a task may choose to wait for a 
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maximum of 10 milliseconds for data to arrive on a queue.  The task will leave the Blocked 

state if either data arrives within 10 milliseconds, or 10 milliseconds pass with no data arriving. 

The Suspended State 

óSuspendedô is also a sub-state of Not Running.  Tasks in the Suspended state are not 

available to the scheduler.  The only way into the Suspended state is through a call to the 

vTaskSuspend() API function, the only way out being through a call to the vTaskResume() or 

xTaskResumeFromISR() API functions.  Most applications do not use the Suspended state. 

The Ready State 

Tasks that are in the Not Running state but are not Blocked or Suspended are said to be in the 

Ready state.  They are able to run, and therefore óreadyô to run, but are not currently in the 

Running state. 

Completing the State Transition Diagram 

Figure 15 expands on the previous over-simplified state diagram to include all the Not Running 

sub-states described in this section.  The tasks created in the examples so far have not used 

the Blocked or Suspended states; they have only transitioned between the Ready state and 

the Running stateðhighlighted by the bold lines in Figure 15. 
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Figure 15.  Full task state machine 

Example 4. Using the Blocked state to create a delay 

All the tasks created in the examples presented so far have been óperiodicôðthey have 

delayed for a period and printed out their string, before delaying once more, and so on.  The 

delay has been generated very crudely using a null loopðthe task effectively polled an 

incrementing loop counter until it reached a fixed value.  Example 3 clearly demonstrated the 

disadvantage of this method.  The higher priority task remained in the Running state while it 

executed the null loop, óstarvingô the lower priority task of any processing time.  

There are several other disadvantages to any form of polling, not least of which is its 

inefficiency.  During polling, the task does not really have any work to do, but it still uses 

maximum processing time, and so wastes processor cycles.  Example 4 corrects this behavior 

by replacing the polling null loop with a call to the vTaskDelay() API function, the prototype for 

which is shown in Listing 22.  The new task definition is shown in Listing 23.  Note that the 

vTaskDelay() API function is available only when INCLUDE_vTaskDelay is set to 1 in 

FreeRTOSConfig.h.  

vTaskDelay() places the calling task into the Blocked state for a fixed number of tick interrupts.  

The task does not use any processing time while it is in the Blocked state, so the task only 

uses processing time when there is actually work to be done. 
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void vTaskDelay( TickType_t  xTicksToDelay );  

 

Listing 22.  The vTaskDelay() API function prototype 

Table 9.  vTaskDelay() parameters 

Parameter 
Name 

Description 

xTicksToDelay The number of tick interrupts that the calling task will remain in the Blocked 

state before being transitioned back into the Ready state. 

For example, if a task called vTaskDelay( 100 ) when the tick count was 

10,000, then it would immediately enter the Blocked state, and remain in 

the Blocked state until the tick count reached 10,100. 

The macro pdMS_TO_TICKS() can be used to convert a time specified in 

milliseconds into a time specified in ticks.  For example, calling 

vTaskDelay( pdMS_TO_TICKS( 100 ) ) will result in the calling task 

remaining in the Blocked state for 100 milliseconds. 
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void vTaskFunction( void *pvParameters )  

{  

char *pcTaskName;  

const TickType_t xDelay250ms = pdMS_TO_TICKS( 250  );  

 

    /* The string to print out is passed in via the parameter.  Cast this to a  

    character pointer. */  

    pcTaskName = ( char * ) pvParameters;  

 

    /* As per most tasks, this task is implemented in an infinite loop. */  

    for( ;; )  

    {  

        /* Print out the name of this task. */  

        vPrintString( pcTaskName );  

 

        /* Delay for a period.  This time a call to vTaskDelay() is used which  places  

        the task into the Blocked state until the delay period has expired.   The  

        para meter takes a time specified in óticks ô, and  the pdMS_TO_TICKS()  macro   

        is used (where the xDelay250ms constant is declared) to convert 250  

        milliseconds into an equivalent time in ticks.  */  

        vTaskDelay(  xDelay250ms );  

    }  

}  

 

Listing 23.  The source code for the example task after the null loop delay has been 
replaced by a call to vTaskDelay()  

Even though the two tasks are still being created at different priorities, both will now run.  The 

output of Example 4, which is shown in Figure 16, confirms the expected behavior. 

 

Figure 16.  The output produced when Example 4 is executed 

The execution sequence shown in Figure 17 explains why both tasks run, even though they 

are created at different priorities.  The execution of the scheduler itself is omitted for simplicity.  

The idle task is created automatically when the scheduler is started, to ensure there is always 

at least one task that is able to run (at least one task in the Ready state).  Section 3.8, The Idle 

Task and the Idle Task Hook, describes the Idle task in more detail. 



161204 Pre-release for FreeRTOS V8.x.x.  See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS 
V9.x.x.  See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x. 

 

70  

 

Time

Task 1

Task 2

t1 t2 t3

Idle

tn

1 - Task 2 has the highest priority so runs first.  It

prints out its string then calls vTaskDelay() - and in so

doing enters the Blocked state, permitting the lower

priority Task 1 to execute.

2 - Task 1 prints out its string, then it too

enters the Blocked state by calling

vTaskDelay().

3 - At this point both application tasks are in

the Blocked state - so the Idle task runs.

4 - When the delay expires the scheduler moves the

tasks back into the ready state, where both execute

again before once again calling vTaskDelay() causing

them to re-enter the Blocked state.  Task 2 executes

first as it has the higher priority.

 

Figure 17.  The execution sequence when the tasks use vTaskDelay() in place of the 
NULL loop 

Only the implementation of the two tasks has changed, not their functionality.  Comparing 

Figure 17 with Figure 12 demonstrates clearly that this functionality is being achieved in a 

much more efficient manner. 

Figure 12 shows the execution pattern when the tasks use a null loop to create a delayðso 

are always able to run, and as a result use one hundred percent of the available processor 

time between them.  Figure 17 shows the execution pattern when the tasks enter the Blocked 

state for the entirety of their delay period, so use processor time only when they actually have 

work that needs to be performed (in this case simply a message to be printed out), and as a 

result only use a tiny fraction of the available processing time. 

In the Figure 17 scenario, each time the tasks leave the Blocked state they execute for a 

fraction of a tick period before re-entering the Blocked state.  Most of the time there are no 

application tasks that are able to run (no application tasks in the Ready state) and, therefore, 

no application tasks that can be selected to enter the Running state.  While this is the case, 

the idle task will run.  The amount of processing time allocated to the idle is a measure of the 

spare processing capacity in the system.  Using an RTOS can significantly increase the spare 

processing capacity simply by allowing an application to be completely event driven. 

The bold lines in Figure 18 show the transitions performed by the tasks in Example 4, with 

each now transitioning through the Blocked state before being returned to the Ready state. 
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Figure 18.  Bold lines indicate the state transitions performed 
 by the tasks in Example 4 

The vTaskDelayUntil() API Function 

vTaskDelayUntil() is similar to vTaskDelay().  As just demonstrated, the vTaskDelay() 

parameter specifies the number of tick interrupts that should occur between a task calling 

vTaskDelay(), and the same task once again transitioning out of the Blocked state.  The length 

of time the task remains in the blocked state is specified by the vTaskDelay() parameter, but 

the time at which the task leaves the blocked state is relative to the time at which vTaskDelay() 

was called.   

The parameters to vTaskDelayUntil() specify, instead, the exact tick count value at which the 

calling task should be moved from the Blocked state into the Ready state.  vTaskDelayUntil() 

is the API function that should be used when a fixed execution period is required (where you 

want your task to execute periodically with a fixed frequency), as the time at which the calling 

task is unblocked is absolute, rather than relative to when the function was called (as is the 

case with vTaskDelay()). 
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void vTaskD elayUntil( TickType_t  * pxPreviousWakeT ime, TickType_t  xTimeIncrement ) ;  

 

Listing 24.  vTaskDelayUntil() API function prototype 

Table 10.  vTaskDelayUntil() parameters 

Parameter Name Description 

pxPreviousWakeTime This parameter is named on the assumption that vTaskDelayUntil() 

is being used to implement a task that executes periodically and 

with a fixed frequency.  In this case, pxPreviousWakeTime holds 

the time at which the task last left the Blocked state (was ówokenô 

up).  This time is used as a reference point to calculate the time at 

which the task should next leave the Blocked state. 

The variable pointed to by pxPreviousWakeTime is updated 

automatically within the vTaskDelayUntil() function; it would not 

normally be modified by the application code, but must be initialized 

to the current tick count before it is used for the first time.  Listing 25 

demonstrates how the initialization is performed. 

xTimeIncrement This parameter is also named on the assumption that 

vTaskDelayUntil() is being used to implement a task that executes 

periodically and with a fixed frequencyðthe frequency being set by 

the xTimeIncrement value. 

xTimeIncrement is specified in óticksô.  The macro 

pdMS_TO_TICKS() can be used to convert a time specified in 

milliseconds into a time specified in ticks. 

Example 5. Converting the example tasks to use vTaskDelayUntil()  

The two tasks created in Example 4 are periodic tasks, but using vTaskDelay() does not 

guarantee that the frequency at which they run is fixed, as the time at which the tasks leave 

the Blocked state is relative to when they call vTaskDelay().  Converting the tasks to use 

vTaskDelayUntil() instead of vTaskDelay() solves this potential problem. 
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void vTaskFunction( void *pvParameters )  

{  

char *pcTaskName;  

TickType_t  xLastWakeTime;  

 

    /* The string to print out is passed in via the parameter.  Cast this to a  

    character pointer. */  

    pcTaskName = ( char * ) pvParameters;  

 

    /* The xLastWakeTime variable needs to be initialized with the current tick  

    count.  Note that this i s the only time the variable is written to explicitly.  

    After this xLastWakeTime is automatically updated within vTaskDelayUntil(). */  

    xLastWakeTime = xTaskGetTickCount() ;  

 

    /* As per most tasks, this task is implemented in an infinite loop. */  

    for( ;; )  

    {  

        /* Print out the name of this task. */  

        vPrintString( pcTaskName );  

 

        /* This  task should  execute every 250 milliseconds  exactly .   As per  

        the vTaskDelay() function, time is measured in ticks, and the  

        pdMS_TO_TICKS() macro  is used to convert milliseconds into ticks.  

        xLastWakeTime is automatically updated within vTaskDelayUntil() ,  so is  not  

        explicitly updated by the  task. */  

        vTaskDelay Until ( &xLastWakeTime, pdMS_TO_TICKS( 250 )  );  

    }  

}  

 

Listing 25.  The implementation of the example task using vTaskDelayUntil() 

The output produced by Example 5 is exactly as per that shown for Example 4 in Figure 16. 

Example 6. Combining blocking and non-blocking tasks 

Previous examples have examined the behavior of both polling and blocking tasks in isolation.  

This example re-enforces the stated expected system behavior by demonstrating an execution 

sequence when the two schemes are combined, as follows. 

1. Two tasks are created at priority 1.  These do nothing other than continuously print out 

a string. 

These tasks never make any API function calls that could cause them to enter the 

Blocked state, so are always in either the Ready or the Running state.  Tasks of this 

nature are called ócontinuous processingô tasks, as they always have work to do (albeit 

rather trivial work, in this case).  The source for the continuous processing tasks is 

shown in Listing 26. 

2. A third task is then created at priority 2, so above the priority of the other two tasks.  

The third task also just prints out a string, but this time periodically, so uses the 
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vTaskDelayUntil() API function to place itself into the Blocked state between each print 

iteration. 

The source for the periodic task is shown in Listing 27. 

 

void vContinuousProcess ingTask( void *pvParameters )  

{  

char *pcTaskName;  

 

    /* The string to print out is passed in via the parameter.  Cast this to a  

    character pointer. */  

    pcTaskName = ( char * ) pvParameters;  

 

    /* As per most tasks, this task is implemented in an infinite loop. */  

    for( ;; )  

    {  

        /* Print out the name of this task.  This task just does this repeatedly  

        without ever blocking or delaying. */  

        vPrintString( pcTaskName );  

    }  

}  

 

Listing 26.  The continuous processing task used in Example 6 

 

void vPeriodicTask( void *pvParameters )  

{  

TickType_t  xLastWakeTime;  

const TickType_t xDelay 3ms = pdMS_TO_TICKS( 3 );  

 

    /* The xLastWakeTime variable needs to be initialized with the current tick  

    count.  Note that this is the only time the variable is explicitly written to.  

    After this xLastWakeTime is managed automatically by the vTaskDelayUntil()  

    API function. */  

    xLastWakeTime = xTaskGetTickCount();  

 

    /* As per most tasks, this task is implemented in an infinite loop. */  

    for( ;; )  

    {  

        /* Print out the name of this task. */  

        vPrintString( "Periodic t ask is running \ r \ n" );  

 

        /* The task should execute every 3 milliseconds  exactly  ï see the  

        declaration of xDelay 3ms in this function . */  

        vTaskDelayUntil( &xLastWakeTime, xDelay 3ms );  

    }  

}  

 

Listing 27.  The periodic task used in Example 6 

Figure 19 shows the output produced by Example 6, with an explanation of the observed 

behavior given by the execution sequence shown in Figure 20. 
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Figure 19.  The output produced when Example 6 is executed 

Time

Continuous 2

Idle

t1 t2

1 - Continuous task 1 runs for a

complete tick period (time slice

between times t1 and t2) - during

which time it could print out its

string many times.

t3

2 - The tick interrupt occurs during which the

scheduler selects a new task to run.  As both

Continuous tasks have the same priority and

both are always able to run the scheduler

shares processing time between the two - so

Continuous 2 enters the Running state where it

remains for the entire tick period - during which

time it could print out its string many times.

Continuous 1

Periodic

3 - At time t3 the tick interrupt

runs again, causing a switch back

to Continuous 1, and so it goes

on.

t5

4 - At time t5 the tick interrupt finds that the Periodic task block

period has expired so moved the Periodic task into the Ready

state.  The Periodic task is the highest priority task so

immediately then enters the Running state where it prints out its

string exactly once before calling vTaskDelayUntil() to return to

the Blocked state.

The Idle task never enters the

Running state as there are

always higher priority task that

are able to do so.

5 - The Periodic task entering the

Blocked state means the scheduler has

again to choose a task to enter the

Running state - in this case Continuous

1 is chosen and it runs up to the next tick

interrupt - during which time it could print

out its string many times.

 

Figure 20.  The execution pattern of Example 6  
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3.8 The Idle Task  and the Idle Task Hook  

The tasks created in Example 4 spend most of their time in the Blocked state.  While in this 

state, they are not able to run, so cannot be selected by the scheduler. 

There must always be at least one task that can enter the Running state1.  To ensure this is 

the case, an Idle task is automatically created by the scheduler when vTaskStartScheduler() is 

called.  The idle task does very little more than sit in a loopðso, like the tasks in the original 

first examples, it is always able to run.  

The idle task has the lowest possible priority (priority zero), to ensure it never prevents a 

higher priority application task from entering the Running stateðalthough there is nothing to 

prevent application designers creating tasks at, and therefore sharing, the idle task priority, if 

desired.  The configIDLE_SHOULD_YIELD compile time configuration constant in 

FreeRTOSConfig.h can be used to prevent the Idle task from consuming processing time that 

would be more productively allocated to applications tasks.  configIDLE_SHOULD_YIELD is 

described in section 3.12, Scheduling Algorithms. 

Running at the lowest priority ensures the Idle task is transitioned out of the Running state as 

soon as a higher priority task enters the Ready state.  This can be seen at time tn in Figure 17, 

where the Idle task is immediately swapped out to allow Task 2 to execute at the instant Task 

2 leaves the Blocked state.  Task 2 is said to have pre-empted the idle task.  Pre-emption 

occurs automatically, and without the knowledge of the task being pre-empted. 

Note: If an application uses the vTaskDelete() API function then it is essential that the Idle task 

is not starved of processing time.  This is because the Idle task is responsible for cleaning up 

kernel resources after a task has been deleted.   

Idle Task Hook Functions 

It is possible to add application specific functionality directly into the idle task through the use 

of an idle hook (or idle callback) functionða function that is called automatically by the idle 

task once per iteration of the idle task loop.  

                                                

1 This is the case even when the special low power features of FreeRTOS are being used, in which 
case the microcontroller on which FreeRTOS is executing will be placed into a low power mode if none 
of the tasks created by the application are able to execute. 
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Common uses for the Idle task hook include: 

¶ Executing low priority, background, or continuous processing functionality. 

¶ Measuring the amount of spare processing capacity. (The idle task will run only when 

all higher priority application tasks have no work to perform; so measuring the amount 

of processing time allocated to the idle task provides a clear indication of how much 

processing time is spare.) 

¶ Placing the processor into a low power mode, providing an easy and automatic method 

of saving power whenever there is no application processing to be performed (although 

the power saving that can be achieved using this method is less than can be achieved 

by using the tick-less idle mode described in Chapter 10, Low Power Support). 

Limitations on the Implementation of Idle Task Hook Functions 

Idle task hook functions must adhere to the following rules. 

1. An Idle task hook function must never attempt to block or suspend.   

Note: Blocking the idle task in any way could cause a scenario where no tasks are 

available to enter the Running state. 

2. If the application makes use of the vTaskDelete() API function, then the Idle task hook 

must always return to its caller within a reasonable time period.  This is because the 

Idle task is responsible for cleaning up kernel resources after a task has been deleted.  

If the idle task remains permanently in the Idle hook function, then this clean-up cannot 

occur. 

Idle task hook functions must have the name and prototype shown by Listing 28. 

 

void vApplicationIdleHook( void );  

 

Listing 28.  The idle task hook function name and prototype 

Example 7. Defining an idle task hook function 

The use of blocking vTaskDelay() API calls in Example 4 created a lot of idle timeðtime when 

the Idle task is executing because both application tasks are in the Blocked state.  Example 7 
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makes use of this idle time through the addition of an Idle hook function, the source for which 

is shown in Listing 29. 

 

/* Declare a variable that will be incremented by the hook function. */  

volatile uint32_t  ulIdleCycleCount = 0UL;  

 

/* Idle hook functions MUST be called vApplicationIdleHook(), take n o parameters,  

and return void. */  

void vApplicationIdleHook( void )  

{  

    /* This hook function does nothing but increment a counter. */  

    ulIdleCycleCount++;  

}  

 

Listing 29.  A very simple Idle hook function 

configUSE_IDLE_HOOK must be set to 1 in FreeRTOSConfig.h for the idle hook function to 

get called. 

The function that implements the created tasks is modified slightly to print out the 

ulIdleCycleCount value, as shown in Listing 30. 

 

void vTaskFunction( void *pvParameters )  

{  

char *pcTaskName;  

const TickType_t xDelay250ms = pdMS_TO_TICKS( 250 );  

 

    /* The string to print out is passed in via the paramete r.  Cast this to a  

    character pointer. */  

    pcTaskName = ( char * ) pvParameters;  

 

    /* As per most tasks, this task is implemented in an infinite loop. */  

    for( ;; )  

    {  

        /* Print out the name of this task AND the number of times ulIdleCycleCount  

        has been incremented. */  

        vPrintString AndNumber( pcTaskName , ulIdleCycleCount  );  

 

        /* Delay for a period  of  250 milliseconds . */  

        vTaskDelay( xDelay2 50ms );  

    }  

}  

 

Listing 30.  The source code for the example task now prints out the 
ulIdleCycleCount value 

The output produced by Example 7 is shown in Figure 21.  It shows the idle task hook function 

is called approximately 4 million times between each iteration of the application tasks (the 

number of iterations is dependent on the speed of the hardware on which the demo is 

executed). 
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Figure 21.  The output produced when Example 7 is executed 
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3.9 Changing the Priority of a Task  

The vTaskPrioritySet() API Function 

The vTaskPrioritySet() API function can be used to change the priority of any task after the 

scheduler has been started.  Note that the vTaskPrioritySet() API function is available only 

when INCLUDE_vTaskPrioritySet is set to 1 in FreeRTOSConfig.h. 

 

void vTaskPrioritySet( TaskHandle_t  pxTask, UBaseType_t  uxNewPriority ) ;  

 

Listing 31.  The vTaskPrioritySet() API function prototype 

Table 11.  vTaskPrioritySet() parameters 

Parameter Name Description 

pxTask The handle of the task whose priority is being modified (the subject 

task)ðsee the pxCreatedTask parameter of the xTaskCreate() API 

function for information on obtaining handles to tasks. 

A task can change its own priority by passing NULL in place of a valid 

task handle. 

uxNewPriority The priority to which the subject task is to be set.  This is capped 

automatically to the maximum available priority of 

(configMAX_PRIORITIES ï 1), where configMAX_PRIORITIES is a 

compile time constant set in the FreeRTOSConfig.h header file. 

The uxTaskPriorityGet() API Function 

The uxTaskPriorityGet() API function can be used to query the priority of a task.  Note that the 

uxTaskPriorityGet() API function is available only when INCLUDE_uxTaskPriorityGet is set to 

1 in FreeRTOSConfig.h. 

 

UBaseType_t  uxTaskP riorityGet ( TaskHandle_t  pxTask );  

 

Listing 32.  The uxTaskPriorityGet() API function prototype 
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Table 12.  uxTaskPriorityGet() parameters and return value 

Parameter Name/ 
Return Value 

Description 

pxTask The handle of the task whose priority is being queried (the subject 

task)ðsee the pxCreatedTask parameter of the xTaskCreate() API 

function for information on obtaining handles to tasks. 

A task can query its own priority by passing NULL in place of a valid 

task handle. 

Returned value The priority currently assigned to the task being queried. 

Example 8. Changing task priorities 

The scheduler will always select the highest Ready state task as the task to enter the Running 

state.  Example 8 demonstrates this by using the vTaskPrioritySet() API function to change the 

priority of two tasks relative to each other. 

Example 8 creates two tasks at two different priorities.  Neither task makes any API function 

calls that could cause it to enter the Blocked state, so both are always in either the Ready 

state or the Running state.  Therefore, the task with the highest relative priority will always be 

the task selected by the scheduler to be in the Running state. 

Example 8 behaves as follows: 

1. Task 1 (Listing 33) is created with the highest priority, so is guaranteed to run first.  

Task 1 prints out a couple of strings before raising the priority of Task 2 (Listing 34) to 

above its own priority.  

2. Task 2 starts to run (enters the Running state) as soon as it has the highest relative 

priority.  Only one task can be in the Running state at any one time, so when Task 2 is 

in the Running state, Task 1 is in the Ready state. 

3. Task 2 prints out a message before setting its own priority back down to below that of 

Task 1. 

4. Task 2 setting its priority back down means Task 1 is once again the highest priority 

task, so Task 1 re-enters the Running state, forcing Task 2 back into the Ready state. 
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void vTask1( void *pvP arameters )  

{  

UBaseType_t  uxPriority;  

 

    /* This task will always run before Task 2  as it is created with  the higher  

    priority.   Neither Task 1  nor Task 2  ever block so both will always be in  

    either the Running or the Ready state.  

 

    Query the  priority at which this task is running -  passing in NULL means  

    "return the calling task ôs priority". */  

    uxPriority = uxTaskPriorityGet( NULL );  

 

    for( ;; )  

    {  

        /* Print out the name of this task. */  

        vPrintString( " Task 1  is ru nning \ r \ n" );  

 

        /* Setting the Task 2  priority above the Task 1  priority will cause  

        Task 2  to immediately start running (as then Task 2  will have the higher  

        priority of the two created tasks).  Note the use of the handle to task  

        2 (xTask2Handle) in the call to vTaskPrioritySet().  Listing 35 shows how  

        the handle was obtained. */  

        vPrintString( "About to r aise the Task 2  priority \ r \ n" );  

        vTaskPrioritySet( xTask2Handle, ( uxPriority + 1 ) );  

 

        /* Task 1  will only run when it has a priority higher than Task 2 .  

        Therefore, for this task to reach this point ,  Task 2  must already have  

        executed and set its priority back down to below the priority of this  

        task . */  

    }  

}  

 

Listing 33.  The implementation of Task 1 in Example 8 
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void vTask2( void *pvParameters )  

{  

UBaseType_t  uxPriority;  

 

    /* Task 1  will always run before this task as Task 1  is created with the  

    higher priority.   Neither Task 1  nor Task 2  ev er block so will always be  

    in either the Running or the Ready state.  

 

    Query the priority at which this task is running -  passing in NULL means  

    "return the calling task ôs priority". */  

    uxPriority = uxTaskPriorityGet( NULL );  

     

    for( ;; )  

    {  

        /* For this task to reach this point Task 1  must have already run and  

        set the priority of this task higher than its own.  

 

        Print out the name of this task. */  

        vPrintString( " Task 2  is running \ r \ n" );  

 

        /* Set the  priority of this task back down to its original value.   

        Passing in NULL as the task handle means " change the priority of the  

        calling task ".  Setting the priority below that of Task 1  will cause  

        Task 1  to immediately start running again  ï pre - empting this task . */  

        vPrintString( "About to lower the Task 2  priority \ r \ n" );  

        vTaskPrioritySet( NULL, ( uxPriority -  2 ) );  

    }  

}  

 

Listing 34.  The implementation of Task 2 in Example 8 

Each task can both query and set its own priority without the use of a valid task handle, by 

simply using NULL, instead.  A task handle is required only when a task wishes to reference a 

task other than itself, such as when Task 1 changes the priority of Task 2.  To allow Task 1 to 

do this, the Task 2 handle is obtained and saved when Task 2 is created, as highlighted in the 

comments in Listing 35. 
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/* Declare a variable that is u sed to hold the handle of Task 2 . */  

TaskHandle_t  xTask2Handle  = NULL ;  

 

int main( void )  

{  

    /* Create the first task at priority 2.  The task parameter is not used  

    and set to NULL.  The task handle is also not used so is also set to NULL. */  

    xTaskCreate( vTask1, "Task 1", 1000, NULL, 2, NULL );  

    /* The task is created at priority 2 ______ ^. */  

 

    /* Create the second task at priority 1 -  which is lower than the priority  

    given to Task 1 .  Again the task parameter is not used so is set to NULL -  

    BUT this time the task handle is required so the address of xTask2Handle  

    is passed in the last parameter.  */  

    xTaskCreate( vTask2, "Task 2", 1000, NULL, 1, &xTask2Handle );  

    /* The task handle is the last parameter _____ ^^^^^^^^^^^^^ */  

 

    /* Start the scheduler so the  tasks start executing. */  

    vTaskStartScheduler();     

     

    /*  If all is well then main() will never reach here as the scheduler will  

    now be running the tasks.  If main() does reach here then it is likely there   

    was insufficient heap memory available for the idle task to be created.  

    Chapter 2  provides more information on heap memory management. */  

    for( ;; );  

}  

 

Listing 35.  The implementation of main() for Example 8 

Figure 22 demonstrates the sequence in which the Example 8 tasks execute, with the 

resultant output shown in Figure 23. 

Time

Task 1

Task 2

t1 t2

Idle

1 - Task1 runs

first as it has the

highest priority

2 - Task2 runs each

time Task1 sets the

Task2 priority to be

the highest

3 - Task1 runs again when

Task2 lowers its own priority

back to being below the

Task1 priority, and so on

The Idle task never runs

as both application tasks

are always able to run and

always have a priority

above the idle priority

 

Figure 22.  The sequence of task execution when running Example 8 
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Figure 23.  The output produced when Example 8 is executed 
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3.10 Deleting a Task  

The vTaskDelete() API Function 

A task can use the vTaskDelete() API function to delete itself, or any other task.  Note that the 

vTaskDelete() API function is available only when INCLUDE_vTaskDelete is set to 1 in 

FreeRTOSConfig.h. 

Deleted tasks no longer exist and cannot enter the Running state again. 

It is the responsibility of the idle task to free memory allocated to tasks that have since been 

deleted.  Therefore, it is important that applications using the vTaskDelete() API function do 

not completely starve the idle task of all processing time. 

Note:  Only memory allocated to a task by the kernel itself will be freed automatically when the 

task is deleted.  Any memory or other resource that the implementation of the task allocated 

must be freed explicitly. 

 

void vTaskDelete( TaskHandle_t  pxTask ToDelete  ) ;  

 

Listing 36.  The vTaskDelete() API function prototype 

 

Table 13.  vTaskDelete() parameters 

Parameter Name/ 
Return Value 

Description 

pxTaskToDelete The handle of the task that is to be deleted (the subject task)ðsee the 

pxCreatedTask parameter of the xTaskCreate() API function for 

information on obtaining handles to tasks. 

A task can delete itself by passing NULL in place of a valid task handle. 
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Example 9. Deleting tasks 

This is a very simple example that behaves as follows. 

1. Task 1 is created by main() with priority 1.  When it runs, it creates Task 2 at priority 2.  

Task 2 is now the highest priority task, so it starts to execute immediately.  The source 

for main() is shown in Listing 37, and the source for Task 1 is shown in Listing 38. 

2. Task 2 does nothing other than delete itself.  It could delete itself by passing NULL to 

vTaskDelete() but instead, for demonstration purposes, it uses its own task handle.  

The source for Task 2 is shown in Listing 39. 

3. When Task 2 has been deleted, Task 1 is again the highest priority task, so continues 

executingðat which point it calls vTaskDelay() to block for a short period. 

4. The Idle task executes while Task 1 is in the blocked state and frees the memory that 

was allocated to the now deleted Task 2. 

5. When Task 1 leaves the blocked state it again becomes the highest priority Ready 

state task and so pre-empts the Idle task.  When it enters the Running state it creates 

Task 2 again, and so it goes on. 

 
 

int main( void )  

{  

    /* Create the first task at priority 1.  The task parameter is not used  

    so  is set to NULL.  The task handle is also not used so likewise is set  

    to NULL. */  

    xTaskCreate( vTask1, "Task 1", 1000, NULL, 1, NULL );  

    /* The task is created at priority 1 ______ ^. */  

 

    /* Start the scheduler so the  task  start s executing. */  

    vTaskStartScheduler();     

     

    /* main()  should never reach here as the sch eduler has been started. */  

    for( ;; );  

}  

 

Listing 37.  The implementation of main() for Example 9  
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TaskHandle_t xTask2Handle  = NULL ;  

 

void vTask1( void *pvParameters )  

{  

const TickType_t  xDelay100ms = pdMS_TO_TICKS( 100UL ) ;  

 

    for( ;; )  

    {  

        /* Print out the name of this task. */  

        vPrintString( " Task 1  is running \ r \ n" );  

 

        /* Create task 2 at a higher priority.  Again the task parameter is not  

        used so is set to NULL -  BUT this time the task handle is required so  

        the address of xTask2Handle is  passed as the last parameter.  */  

        xTaskCreate( vTask2, "Task 2", 1000, NULL, 2, &xTask2Handle );  

        /* The task handle is the last parameter _____ ^^^^^^^^^^^^^ */  

 

        /* Task 2  has/had the higher priority, so for Task 1  to reach here Task  2 

        must have already executed and deleted itself.  Delay for 100  

        milliseconds. */  

        vTaskDelay( xDelay100ms );  

    }  

}  

 

Listing 38.  The implementation of Task 1 for Example 9 

 

void vTask2( void *pvParameters )  

{  

    /* Task 2  does nothing but delete itself.  To do this it could call vTaskDelete()  

    using  NULL as the parameter, but instead ,  and purely for demonst ration purposes ,  

    it calls vTaskDelete() passing its own task handle. */  

    vPrintString( " Task 2  is running and about to delete itself \ r \ n" );  

    vTaskDelete( xTask2Handle );  

}  

 

Listing 39.  The implementation of Task 2 for Example 9 

 

Figure 24.  The output produced when Example 9 is executed 
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