

 i

Mastering the FreeRTOSÊ
Real Time Kernel

This is the 161204 copy which does not yet cover FreeRTOS V9.0.0, FreeRTOS V10.0.0, or

low power tick-less operation. Check http://www.FreeRTOS.org regularly for additional

documentation and updates to this book. See http://www.FreeRTOS.org/FreeRTOS-V9.html

for information on FreeRTOS V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for

information on FreeRTOS V10.x.x. Applications created using FreeRTOS V9.x.x onwards can

allocate all kernel objects statically at compile time, removing the need to include a heap

memory manager.

This text is being provided for free. In return we ask that you use the business contact

email link on http://www.FreeRTOS.org/contact to provide feedback, comments and

corrections. Thank you.

http://www.freertos.org/
http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
http://www.freertos.org/contact

ii

 iii

iv

Mastering the FreeRTOSÊ
Real Time Kernel

A Hands -On Tutorial Guide

Richard Barry

 v

Pre-release 161204 Edition.

All text, source code, and diagrams are the exclusive property of Real Time Engineers Ltd.

unless otherwise noted inline.

© Real Time Engineers Ltd. 2016. All rights reserved.

http://www.FreeRTOS.org
http://www.FreeRTOS.org/plus
http://www.FreeRTOS.org/labs

FreeRTOSÊ, FreeRTOS.orgÊ and the FreeRTOS logo are trademarks of Real Time Engineers Ltd. OPENRTOS® and

SAFERTOS® are trademarks of WITTENSTEIN Aerospace and Simulation Ltd. All other brands or product names are the

property of their respective holders.

http://www.freertos.org/
http://www.freertos.org/plus

vi

 vii

To Caroline, India and Max.

viii

 ix

Contents

Contents .. ix

List of Figures ... xvi

List of Code Listings ... xix

List of Tables .. xxiii

List of Notation .. xxvi

Preface .. 1

Multitasking in Small Embedded Systems .. 2

About FreeRTOS ... 2

Value Proposition ... 3

A Note About Terminology ... 3

Why Use a Real-time Kernel? .. 3

FreeRTOS Features .. 5

Licensing, and The FreeRTOS, OpenRTOS, and SafeRTOS Family 6

Included Source Files and Projects .. 7

Obtaining the Examples that Accompany this Book ... 7

Chapter 1 The FreeRTOS Distribution ... 9

1.1 Chapter Introduction and Scope .. 10

Scope .. 10

1.2 Understanding the FreeRTOS Distribution .. 11

Definition: FreeRTOS Port ... 11

Building FreeRTOS .. 11

FreeRTOSConfig.h .. 11

The Official FreeRTOS Distribution .. 12

The Top Directories in the FreeRTOS Distribution ... 12

FreeRTOS Source Files Common to All Ports ... 12

FreeRTOS Source Files Specific to a Port ... 14

Header Files .. 15

1.3 Demo Applications .. 16

1.4 Creating a FreeRTOS Project ... 18

Adapting One of the Supplied Demo Projects .. 18

Creating a New Project from Scratch ... 19

1.5 Data Types and Coding Style Guide ... 20

Data Types .. 21

Variable Names ... 22

Function Names ... 22

Formatting.. 23

x

Macro Names ... 23

Rationale for Excessive Type Casting .. 24

Chapter 2 Heap Memory Management ... 25

2.1 Chapter Introduction and Scope .. 26

Prerequisites .. 26

Dynamic Memory Allocation and its Relevance to FreeRTOS .. 26

Options for Dynamic Memory Allocation ... 27

Scope ... 28

2.2 Example Memory Allocation Schemes .. 29

From FreeRTOS V9.0.0 FreeRTOS applications can be completely statically
allocated, removing the need to include a heap memory manager 29

Heap_1 .. 29

Heap_2 .. 30

Heap_3 .. 32

Heap_4 .. 32

Setting a Start Address for the Array Used By Heap_4 .. 34

Heap_5 .. 35

The vPortDefineHeapRegions() API Function .. 36

2.3 Heap Related Utility Functions .. 41

The xPortGetFreeHeapSize() API Function .. 41

The xPortGetMinimumEverFreeHeapSize() API Function .. 41

Malloc Failed Hook Functions .. 42

Chapter 3 Task Management ... 44

3.1 Chapter Introduction and Scope .. 45

Scope ... 45

3.2 Task Functions .. 46

3.3 Top Level Task States ... 47

3.4 Creating Tasks .. 48

The xTaskCreate() API Function .. 48

Example 1. Creating tasks ... 51

Example 2. Using the task parameter ... 55

3.5 Task Priorities ... 58

3.6 Time Measurement and the Tick Interrupt ... 60

Example 3. Experimenting with priorities .. 62

3.7 Expanding the óNot Runningô State .. 64

The Blocked State .. 64

The Suspended State... 65

The Ready State .. 65

Completing the State Transition Diagram ... 65

Example 4. Using the Blocked state to create a delay .. 66

The vTaskDelayUntil() API Function ... 70

Example 5. Converting the example tasks to use vTaskDelayUntil() 71

 xi

Example 6. Combining blocking and non-blocking tasks .. 72

3.8 The Idle Task and the Idle Task Hook ... 75

Idle Task Hook Functions ... 75

Limitations on the Implementation of Idle Task Hook Functions 76

Example 7. Defining an idle task hook function .. 76

3.9 Changing the Priority of a Task ... 79

The vTaskPrioritySet() API Function .. 79

The uxTaskPriorityGet() API Function .. 79

Example 8. Changing task priorities ... 80

3.10 Deleting a Task ... 85

The vTaskDelete() API Function .. 85

Example 9. Deleting tasks .. 86

3.11 Thread Local Storage .. 89

3.12 Scheduling Algorithms .. 90

A Recap of Task States and Events ... 90

Configuring the Scheduling Algorithm .. 90

Prioritized Pre-emptive Scheduling with Time Slicing ... 91

Prioritized Pre-emptive Scheduling (without Time Slicing) .. 95

Co-operative Scheduling .. 97

Chapter 4 Queue Management .. 101

4.1 Chapter Introduction and Scope .. 102

Scope .. 102

4.2 Characteristics of a Queue .. 103

Data Storage .. 103

Access by Multiple Tasks ... 106

Blocking on Queue Reads ... 106

Blocking on Queue Writes .. 106

Blocking on Multiple Queues .. 107

4.3 Using a Queue .. 108

The xQueueCreate() API Function ... 108

The xQueueSendToBack() and xQueueSendToFront() API Functions 109

The xQueueReceive() API Function ... 111

The uxQueueMessagesWaiting() API Function .. 113

Example 10. Blocking when receiving from a queue .. 114

4.4 Receiving Data From Multiple Sources ... 119

Example 11. Blocking when sending to a queue, and sending structures on a queue .. 120

4.5 Working with Large or Variable Sized Data ... 126

Queuing Pointers ... 126

Using a Queue to Send Different Types and Lengths of Data 128

4.6 Receiving From Multiple Queues .. 131

Queue Sets .. 131

The xQueueCreateSet() API Function .. 132

The xQueueAddToSet() API Function .. 134

xii

The xQueueSelectFromSet() API Function .. 135

Example 12. Using a Queue Set .. 137

More Realistic Queue Set Use Cases .. 141

4.7 Using a Queue to Create a Mailbox ... 143

The xQueueOverwrite() API Function ... 144

The xQueuePeek() API Function .. 145

Chapter 5 Software Timer Management ... 147

5.1 Chapter Introduction and Scope .. 148

Scope ... 148

5.2 Software Timer Callback Functions ... 149

5.3 Attributes and States of a Software Timer ... 150

Period of a Software Timer ... 150

One-shot and Auto-reload Timers .. 150

Software Timer States .. 151

5.4 The Context of a Software Timer ... 153

The RTOS Daemon (Timer Service) Task .. 153

The Timer Command Queue .. 153

Daemon Task Scheduling .. 154

5.5 Creating and Starting a Software Timer ... 158

The xTimerCreate() API Function ... 158

The xTimerStart() API Function .. 159

Example 13. Creating one-shot and auto-reload timers .. 163

5.6 The Timer ID ... 166

The vTimerSetTimerID() API Function ... 166

The pvTimerGetTimerID() API Function ... 166

Example 14. Using the callback function parameter and the software timer ID 167

5.7 Changing the Period of a Timer ... 170

The xTimerChangePeriod() API Function ... 170

5.8 Resetting a Software Timer ... 174

The xTimerReset() API Function .. 174

Example 15. Resetting a software timer ... 176

Chapter 6 Interrupt Management .. 181

6.1 Chapter Introduction and Scope .. 182

Events .. 182

Scope ... 183

6.2 Using the FreeRTOS API from an ISR .. 184

The Interrupt Safe API .. 184

The Benefits of Using a Separate Interrupt Safe API .. 184

The Disadvantages of Using a Separate Interrupt Safe API ... 185

The xHigherPriorityTaskWoken Parameter .. 185

The portYIELD_FROM_ISR() and portEND_SWITCHING_ISR() Macros 187

6.3 Deferred Interrupt Processing .. 189

 xiii

6.4 Binary Semaphores Used for Synchronization .. 191

The xSemaphoreCreateBinary() API Function ... 194

The xSemaphoreTake() API Function .. 194

The xSemaphoreGiveFromISR() API Function .. 196

Example 16. Using a binary semaphore to synchronize a task with an interrupt 198

Improving the Implementation of the Task Used in Example 16 202

6.5 Counting Semaphores .. 208

The xSemaphoreCreateCounting() API Function ... 210

Example 17. Using a counting semaphore to synchronize a task with an interrupt 211

6.6 Deferring Work to the RTOS Daemon Task .. 213

The xTimerPendFunctionCallFromISR() API Function ... 214

Example 18. Centralized deferred interrupt processing .. 216

6.7 Using Queues within an Interrupt Service Routine .. 220

The xQueueSendToFrontFromISR() and xQueueSendToBackFromISR() API
Functions ... 220

Considerations When Using a Queue From an ISR ... 222

Example 19. Sending and receiving on a queue from within an interrupt 222

6.8 Interrupt Nesting ... 228

A Note to ARM Cortex-M and ARM GIC Users .. 230

Chapter 7 Resource Management ... 233

7.1 Chapter Introduction and Scope .. 234

Mutual Exclusion .. 236

Scope .. 237

7.2 Critical Sections and Suspending the Scheduler ... 238

Basic Critical Sections ... 238

Suspending (or Locking) the Scheduler ... 240

The vTaskSuspendAll() API Function ... 241

The xTaskResumeAll() API Function ... 241

7.3 Mutexes (and Binary Semaphores) ... 243

The xSemaphoreCreateMutex() API Function .. 245

Example 20. Rewriting vPrintString() to use a semaphore ... 245

Priority Inversion .. 249

Priority Inheritance ... 250

Deadlock (or Deadly Embrace) .. 251

Recursive Mutexes .. 252

Mutexes and Task Scheduling ... 255

7.4 Gatekeeper Tasks ... 259

Example 21. Re-writing vPrintString() to use a gatekeeper task 259

Chapter 8 Event Groups... 265

8.1 Chapter Introduction and Scope .. 266

Scope .. 266

8.2 Characteristics of an Event Group ... 268

xiv

Event Groups, Event Flags and Event Bits ... 268

More About the EventBits_t Data Type .. 269

Access by Multiple Tasks ... 269

A Practical Example of Using an Event Group ... 269

8.3 Event Management Using Event Groups ... 271

The xEventGroupCreate() API Function ... 271

The xEventGroupSetBits() API Function .. 271

The xEventGroupSetBitsFromISR() API Function .. 272

The xEventGroupWaitBits() API Function ... 275

Example 22. Experimenting with event groups ... 279

8.4 Task Synchronization Using an Event Group .. 285

The xEventGroupSync() API Function .. 287

Example 23. Synchronizing tasks ... 289

Chapter 9 Task Notifications ... 293

9.1 Chapter Introduction and Scope .. 294

Communicating Through Intermediary Objects... 294

Task NotificationsðDirect to Task Communication .. 294

Scope ... 295

9.2 Task Notifications; Benefits and Limitations ... 296

Performance Benefits of Task Notifications .. 296

RAM Footprint Benefits of Task Notifications ... 296

Limitations of Task Notifications ... 296

9.3 Using Task Notifications .. 298

Task Notification API Options ... 298

The xTaskNotifyGive() API Function .. 298

The vTaskNotifyGiveFromISR() API Function .. 299

The ulTaskNotifyTake() API Function ... 300

Example 24. Using a task notification in place of a semaphore, method 1 302

Example 25. Using a task notification in place of a semaphore, method 2 305

The xTaskNotify() and xTaskNotifyFromISR() API Functions 307

The xTaskNotifyWait() API Function ... 310

Task Notifications Used in Peripheral Device Drivers: UART Example 313

Task Notifications Used in Peripheral Device Drivers: ADC Example 320

Task Notifications Used Directly Within an Application ... 322

Chapter 10 Low Power Support .. 327

Chapter 11 Developer Support ... 328

11.1 Chapter Introduction and Scope .. 329

11.2 configASSERT() .. 330

Example configASSERT() definitions ... 330

11.3 FreeRTOS+Trace .. 332

11.4 Debug Related Hook (Callback) Functions .. 336

 xv

Malloc failed hook .. 336

11.5 Viewing Run-time and Task State Information ... 337

Task Run-Time Statistics ... 337

The Run-Time Statistics Clock ... 337

Configuring an Application to Collect Run-Time Statistics .. 338

The uxTaskGetSystemState() API Function ... 339

The vTaskList() Helper Function .. 342

The vTaskGetRunTimeStats() Helper Function .. 344

Generating and Displaying Run-Time Statistics, a Worked Example 345

11.6 Trace Hook Macros ... 348

Available Trace Hook Macros .. 348

Defining Trace Hook Macros .. 352

FreeRTOS Aware Debugger Plug-ins .. 353

Chapter 12 Trouble Shooting ... 355

12.1 Chapter Introduction and Scope .. 356

12.2 Interrupt Priorities .. 357

12.3 Stack Overflow .. 359

The uxTaskGetStackHighWaterMark() API Function ... 359

Run Time Stack CheckingðOverview ... 360

Run Time Stack CheckingðMethod 1 ... 360

Run Time Stack CheckingðMethod 2 ... 361

12.4 Inappropriate Use of printf() and sprintf() ... 362

Printf-stdarg.c .. 362

12.5 Other Common Sources of Error ... 364

Symptom: Adding a simple task to a demo causes the demo to crash 364

Symptom: Using an API function within an interrupt causes the application to crash ... 364

Symptom: Sometimes the application crashes within an interrupt service routine 364

Symptom: The scheduler crashes when attempting to start the first task 365

Symptom: Interrupts are unexpectedly left disabled, or critical sections do not nest
correctly ... 365

Symptom: The application crashes even before the scheduler is started 365

Symptom: Calling API functions while the scheduler is suspended, or from inside a
critical section, causes the application to crash .. 366

INDEX .. 368

xvi

 List of Figures

Figure 1. Top level directories within the FreeRTOS distribution .. 12

Figure 2. Core FreeRTOS source files within the FreeRTOS directory tree 13

Figure 3. Port specific source files within the FreeRTOS directory tree 14

Figure 4. The demo directory hierarchy .. 17

Figure 5. RAM being allocated from the heap_1 array each time a task is created 30

Figure 6. RAM being allocated and freed from the heap_2 array as tasks are created
and deleted ... 31

Figure 7. RAM being allocated and freed from the heap_4 array ... 33

Figure 8 Memory Map ... 37

Figure 9. Top level task states and transitions.. 47

Figure 10. The output produced when Example 1 is executed ... 53

Figure 11. The actual execution pattern of the two Example 1 tasks 54

Figure 12. The execution sequence expanded to show the tick interrupt executing 61

Figure 13. Running both tasks at different priorities ... 63

Figure 14. The execution pattern when one task has a higher priority than the other 63

Figure 15. Full task state machine .. 66

Figure 16. The output produced when Example 4 is executed ... 68

Figure 17. The execution sequence when the tasks use vTaskDelay() in place of the
NULL loop ... 69

Figure 18. Bold lines indicate the state transitions performed by the tasks in Example 4 70

Figure 19. The output produced when Example 6 is executed ... 74

Figure 20. The execution pattern of Example 6 .. 74

Figure 21. The output produced when Example 7 is executed ... 78

Figure 22. The sequence of task execution when running Example 8 83

Figure 23. The output produced when Example 8 is executed ... 84

Figure 24. The output produced when Example 9 is executed ... 87

Figure 25. The execution sequence for example 9 ... 88

Figure 26. Execution pattern highlighting task prioritization and pre-emption in a
hypothetical application in which each task has been assigned a unique
priority ... 92

Figure 27 Execution pattern highlighting task prioritization and time slicing in a
hypothetical application in which two tasks run at the same priority 94

Figure 28 The execution pattern for the same scenario as shown in Figure 27, but this
time with configIDLE_SHOULD_YIELD set to 1 .. 95

Figure 29 Execution pattern that demonstrates how tasks of equal priority can receive
hugely different amounts of processing time when time slicing is not used 96

Figure 30 Execution pattern demonstrating the behavior of the co-operative scheduler 98

Figure 31. An example sequence of writes to, and reads from a queue 104

Figure 32. The output produced when Example 10 is executed ... 118

Figure 33. The sequence of execution produced by Example 10 ... 118

Figure 34. An example scenario where structures are sent on a queue 119

Figure 35 The output produced by Example 11 ... 123

 xvii

Figure 36. The sequence of execution produced by Example 11 ... 124

Figure 37 The output produced when Example 12 is executed ... 141

Figure 38 The difference in behavior between one-shot and auto-reload software timers 150

Figure 39 Auto-reload software timer states and transitions .. 152

Figure 40 One-shot software timer states and transitions ... 152

Figure 41 The timer command queue being used by a software timer API function to
communicate with the RTOS daemon task ... 154

Figure 42 The execution pattern when the priority of a task calling xTimerStart() is above
the priority of the daemon task .. 154

Figure 43 The execution pattern when the priority of a task calling xTimerStart() is below
the priority of the daemon task .. 156

Figure 44 The output produced when Example 13 is executed ... 165

Figure 45 The output produced when Example 14 is executed ... 169

Figure 46 Starting and resetting a software timer that has a period of 6 ticks 174

Figure 47 The output produced when Example 15 is executed ... 179

Figure 48 Completing interrupt processing in a high priority task .. 190

Figure 49. Using a binary semaphore to implement deferred interrupt processing 191

Figure 50. Using a binary semaphore to synchronize a task with an interrupt 193

Figure 51. The output produced when Example 16 is executed ... 201

Figure 52. The sequence of execution when Example 16 is executed 202

Figure 53. The scenario when one interrupt occurs before the task has finished
processing the first event .. 204

Figure 54 The scenario when two interrupts occur before the task has finished
processing the first event .. 205

Figure 55. Using a counting semaphore to ócountô events .. 209

Figure 56. The output produced when Example 17 is executed ... 212

Figure 57. The output produced when Example 18 is executed ... 218

Figure 58 The sequence of execution when Example 18 is executed 219

Figure 59. The output produced when Example 19 is executed ... 226

Figure 60. The sequence of execution produced by Example 19 ... 227

Figure 61. Constants affecting interrupt nesting behavior .. 230

Figure 62 How a priority of binary 101 is stored by a Cortex-M microcontroller that
implements four priority bits .. 231

Figure 63. Mutual exclusion implemented using a mutex ... 244

Figure 64. The output produced when Example 20 is executed ... 248

Figure 65. A possible sequence of execution for Example 20 .. 249

Figure 66. A worst case priority inversion scenario .. 250

Figure 67. Priority inheritance minimizing the effect of priority inversion 251

Figure 68 A possible sequence of execution when tasks that have the same priority use
the same mutex .. 255

Figure 69 A sequence of execution that could occur if two instances of the task shown by
Listing 125 are created at the same priority .. 257

Figure 70. The output produced when Example 21 is executed ... 264

Figure 71 Event flag to bit number mapping in a variable of type EventBits_t 268

xviii

Figure 72 An event group in which only bits 1, 4 and 7 are set, and all the other event
flags are clear, making the event groupôs value 0x92 .. 268

Figure 73 The output produced when Example 22 is executed with xWaitForAllBits set to
pdFALSE .. 283

Figure 74 The output produced when Example 22 is executed with xWaitForAllBits set to
pdTRUE .. 284

Figure 75 The output produced when Example 23 is executed ... 292

Figure 76 A communication object being used to send an event from one task to another 294

Figure 77 A task notification used to send an event directly from one task to another 295

Figure 78. The output produced when Example 16 is executed ... 304

Figure 79. The sequence of execution when Example 24 is executed 305

Figure 80. The output produced when Example 25 is executed ... 307

Figure 81 The communication paths from the application tasks to the cloud server, and
back again .. 323

Figure 82 FreeRTOS+Trace includes more than 20 interconnected views 332

Figure 83 FreeRTOS+Trace main trace view - one of more than 20 interconnected trace
views .. 333

Figure 84 FreeRTOS+Trace CPU load view - one of more than 20 interconnected trace
views .. 334

Figure 85 FreeRTOS+Trace response time view - one of more than 20 interconnected
trace views .. 334

Figure 86 FreeRTOS+Trace user event plot view - one of more than 20 interconnected
trace views .. 335

Figure 87 FreeRTOS+Trace kernel object history view - one of more than 20
interconnected trace views .. 335

Figure 88 Example output generated by vTaskList() ... 344

Figure 89 Example output generated by vTaskGetRunTimeStats() 345

Figure 90 FreeRTOS ThreadSpy Eclipse plug-in from Code Confidence Ltd. 353

file:///R:/FreeRTOS/Projects/191-ApplicationNotesAndBook/3rd%20edition/Mastering%20the%20FreeRTOS%20Real%20Time%20Kernel%20-%20A%20Hands-On%20Tutorial%20Guide.docx%23_Toc468601029

 xix

List of Code Listings

Listing 1. The template for a new main() function ... 18

Listing 2. Using GCC syntax to declare the array that will be used by heap_4, and place
the array in a memory section named .my_heap .. 35

Listing 3. Using IAR syntax to declare the array that will be used by heap_4, and place
the array at the absolute address 0x20000000 ... 35

Listing 4. The vPortDefineHeapRegions() API function prototype .. 36

Listing 5. The HeapRegion_t structure ... 36

Listing 6. An array of HeapRegion_t structures that together describe the 3 regions of
RAM in their entirety ... 38

Listing 7. An array of HeapRegion_t structures that describe all of RAM2, all of RAM3,
but only part of RAM1 ... 39

Listing 8. The xPortGetFreeHeapSize() API function prototype .. 41

Listing 9. The xPortGetMinimumEverFreeHeapSize() API function prototype 41

Listing 10. The malloc failed hook function name and prototype. ... 42

Listing 11. The task function prototype ... 46

Listing 12. The structure of a typical task function .. 46

Listing 13. The xTaskCreate() API function prototype .. 48

Listing 14. Implementation of the first task used in Example 1 ... 52

Listing 15. Implementation of the second task used in Example 1 ... 52

Listing 16. Starting the Example 1 tasks .. 53

Listing 17. Creating a task from within another task after the scheduler has started 55

Listing 18. The single task function used to create two tasks in Example 2 56

Listing 19. The main() function for Example 2. ... 57

Listing 20. Using the pdMS_TO_TICKS() macro to convert 200 milliseconds into an
equivalent time in tick periods ... 61

Listing 21. Creating two tasks at different priorities .. 62

Listing 22. The vTaskDelay() API function prototype .. 67

Listing 23. The source code for the example task after the null loop delay has been
replaced by a call to vTaskDelay() .. 68

Listing 24. vTaskDelayUntil() API function prototype .. 71

Listing 25. The implementation of the example task using vTaskDelayUntil() 72

Listing 26. The continuous processing task used in Example 6 .. 73

Listing 27. The periodic task used in Example 6 .. 73

Listing 28. The idle task hook function name and prototype ... 76

Listing 29. A very simple Idle hook function ... 77

Listing 30. The source code for the example task now prints out the ulIdleCycleCount
value ... 77

Listing 31. The vTaskPrioritySet() API function prototype .. 79

Listing 32. The uxTaskPriorityGet() API function prototype .. 79

Listing 33. The implementation of Task 1 in Example 8 ... 81

Listing 34. The implementation of Task 2 in Example 8 ... 82

Listing 35. The implementation of main() for Example 8 ... 83

xx

Listing 36. The vTaskDelete() API function prototype ... 85

Listing 37. The implementation of main() for Example 9 ... 86

Listing 38. The implementation of Task 1 for Example 9 .. 87

Listing 39. The implementation of Task 2 for Example 9 .. 87

Listing 40. The xQueueCreate() API function prototype ... 108

Listing 41. The xQueueSendToFront() API function prototype ... 109

Listing 42. The xQueueSendToBack() API function prototype .. 109

Listing 43. The xQueueReceive() API function prototype ... 112

Listing 44. The uxQueueMessagesWaiting() API function prototype 113

Listing 45. Implementation of the sending task used in Example 10. 115

Listing 46. Implementation of the receiver task for Example 10 .. 116

Listing 47. The implementation of main() in Example 10 .. 117

Listing 48. The definition of the structure that is to be passed on a queue, plus the
declaration of two variables for use by the example .. 120

Listing 49. The implementation of the sending task for Example 11 121

Listing 50. The definition of the receiving task for Example 11 ... 122

Listing 51. The implementation of main() for Example 11 ... 123

Listing 52. Creating a queue that holds pointers ... 127

Listing 53. Using a queue to send a pointer to a buffer ... 127

Listing 54. Using a queue to receive a pointer to a buffer ... 127

Listing 55. The structure used to send events to the TCP/IP stack task in
FreeRTOS+TCP ... 128

Listing 56. Pseudo code showing how an IPStackEvent_t structure is used to send data
received from the network to the TCP/IP task ... 129

Listing 57. Pseudo code showing how an IPStackEvent_t structure is used to send the
handle of a socket that is accepting a connection to the TCP/IP task 129

Listing 58. Pseudo code showing how an IPStackEvent_t structure is used to send a
network down event to the TCP/IP task .. 130

Listing 59. Pseudo code showing how an IPStackEvent_t structure is used to send a
network down to the TCP/IP task .. 130

Listing 60. The xQueueCreateSet() API function prototype .. 132

Listing 61. The xQueueAddToSet() API function prototype .. 134

Listing 62. The xQueueSelectFromSet() API function prototype ... 135

Listing 63. Implementation of main() for Example 12 .. 138

Listing 64. The sending tasks used in Example 12 ... 139

Listing 65. The receive task used in Example 12 .. 140

Listing 66. Using a queue set that contains queues and semaphores 142

Listing 67. A queue being created for use as a mailbox ... 144

Listing 68. The xQueueOverwrite() API function prototype ... 144

Listing 69. Using the xQueueOverwrite() API function .. 145

Listing 70. The xQueuePeek() API function prototype .. 146

Listing 71. Using the xQueuePeek() API function ... 146

Listing 72. The software timer callback function prototype ... 149

Listing 73. The xTimerCreate() API function prototype ... 158

 xxi

Listing 74. The xTimerStart() API function prototype .. 160

Listing 75. Creating and starting the timers used in Example 13 .. 163

Listing 76. The callback function used by the one-shot timer in Example 13 164

Listing 77. The callback function used by the auto-reload timer in Example 13 164

Listing 78. The vTimerSetTimerID() API function prototype ... 166

Listing 79. The pvTimerGetTimerID() API function prototype ... 166

Listing 80. Creating the timers used in Example 14 ... 167

Listing 81. The timer callback function used in Example 14 ... 168

Listing 82. The xTimerChangePeriod() API function prototype ... 170

Listing 83. Using xTimerChangePeriod() ... 173

Listing 84. The xTimerReset() API function prototype .. 175

Listing 85. The callback function for the one-shot timer used in Example 15 177

Listing 86. The task used to reset the software timer in Example 15 178

Listing 87. The portEND_SWITCHING_ISR() macros .. 188

Listing 88. The portYIELD_FROM_ISR() macros ... 188

Listing 89. The xSemaphoreCreateBinary() API function prototype 194

Listing 90. The xSemaphoreTake() API function prototype .. 195

Listing 91. The xSemaphoreGiveFromISR() API function prototype 196

Listing 92. Implementation of the task that periodically generates a software interrupt in
Example 16 .. 198

Listing 93. The implementation of the task to which the interrupt processing is deferred
(the task that synchronizes with the interrupt) in Example 16.............................. 199

Listing 94. The ISR for the software interrupt used in Example 16 200

Listing 95. The implementation of main() for Example 16 ... 201

Listing 96. The recommended structure of a deferred interrupt processing task, using a
UART receive handler as an example .. 207

Listing 97. The xSemaphoreCreateCounting() API function prototype 210

Listing 98. The call to xSemaphoreCreateCounting() used to create the counting
semaphore in Example 17 .. 211

Listing 99. The implementation of the interrupt service routine used by Example 17 212

Listing 100. The xTimerPendFunctionCallFromISR() API function prototype 214

Listing 101. The prototype to which a function passed in the xFunctionToPend
parameter of xTimerPendFunctionCallFromISR() must conform 214

Listing 102. The software interrupt handler used in Example 18 .. 217

Listing 103. The function that performs the processing necessitated by the interrupt in
Example 18. ... 217

Listing 104. The implementation of main() for Example 18 ... 218

Listing 105. The xQueueSendToFrontFromISR() API function prototype 220

Listing 106. The xQueueSendToBackFromISR() API function prototype 220

Listing 107. The implementation of the task that writes to the queue in Example 19 223

Listing 108. The implementation of the interrupt service routine used by Example 19 224

Listing 109. The task that prints out the strings received from the interrupt service
routine in Example 19 ... 225

Listing 110. The main() function for Example 19 .. 226

Listing 111. An example read, modify, write sequence .. 234

xxii

Listing 112. An example of a reentrant function .. 236

Listing 113. An example of a function that is not reentrant ... 236

Listing 114. Using a critical section to guard access to a register ... 238

Listing 115. A possible implementation of vPrintString() ... 239

Listing 116. Using a critical section in an interrupt service routine .. 240

Listing 117. The vTaskSuspendAll() API function prototype ... 241

Listing 118. The xTaskResumeAll() API function prototype .. 241

Listing 119. The implementation of vPrintString() ... 242

Listing 120. The xSemaphoreCreateMutex() API function prototype 245

Listing 121. The implementation of prvNewPrintString() ... 246

Listing 122. The implementation of prvPrintTask() for Example 20 247

Listing 123. The implementation of main() for Example 20 ... 248

Listing 124. Creating and using a recursive mutex ... 254

Listing 125. A task that uses a mutex in a tight loop ... 256

Listing 126. Ensuring tasks that use a mutex in a loop receive a more equal amount of
processing time, while also ensuring processing time is not wasted by
switching between tasks too rapidly .. 258

Listing 127. The name and prototype for a tick hook function ... 260

Listing 128. The gatekeeper task ... 260

Listing 129. The print task implementation for Example 21 .. 261

Listing 130. The tick hook implementation .. 262

Listing 131. The implementation of main() for Example 21 ... 263

Listing 132. The xEventGroupCreate() API function prototype ... 271

Listing 133. The xEventGroupSetBits() API function prototype ... 272

Listing 134. The xEventGroupSetBitsFromISR() API function prototype............................... 273

Listing 135. The xEventGroupWaitBits() API function prototype ... 275

Listing 136. Event bit definitions used in Example 22 ... 279

Listing 137. The task that sets two bits in the event group in Example 22 280

Listing 138. The ISR that sets bit 2 in the event group in Example 22 281

Listing 139. The task that blocks to wait for event bits to become set in Example 22 282

Listing 140. Creating the event group and tasks in Example 22 ... 283

Listing 141. Pseudo code for two tasks that synchronize with each other to ensure a
shared TCP socket is no longer in use by either task before the socket is
closed ... 286

Listing 142. The xEventGroupSync() API function prototype .. 288

Listing 143. The implementation of the task used in Example 23 ... 290

Listing 144. The main() function used in Example 23 ... 291

Listing 145. The xTaskNotifyGive() API function prototype ... 298

Listing 146. The vTaskNotifyGiveFromISR() API function prototype 299

Listing 147. The ulTaskNotifyTake() API function prototype ... 300

Listing 148. The implementation of the task to which the interrupt processing is deferred
(the task that synchronizes with the interrupt) in Example 24 303

Listing 149. The implementation of the interrupt service routine used in Example 24 304

 xxiii

Listing 150. The implementation of the task to which the interrupt processing is deferred
(the task that synchronizes with the interrupt) in Example 25.............................. 306

Listing 151. The implementation of the interrupt service routine used in Example 25 306

Listing 152. Prototypes for the xTaskNotify() and xTaskNotifyFromISR() API functions 308

Listing 153. The xTaskNotifyWait() API function prototype ... 310

Listing 154. Pseudo code demonstrating how a binary semaphore can be used in a
driver library transmit function ... 315

Listing 155. Pseudo code demonstrating how a task notification can be used in a driver
library transmit function ... 317

Listing 156. Pseudo code demonstrating how a task notification can be used in a driver
library receive function .. 319

Listing 157. Pseudo code demonstrating how a task notification can be used to pass a
value to a task .. 321

Listing 158. The structure and data type sent on a queue to the server task 323

Listing 159. The Implementation of the Cloud Read API Function 324

Listing 160. The Server Task Processing a Read Request .. 324

Listing 161. The Implementation of the Cloud Write API Function .. 325

Listing 162. The Server Task Processing a Send Request .. 326

Listing 163 Using the standard C assert() macro to check pxMyPointer is not NULL 330

Listing 164 A simple configASSERT() definition useful when executing under the control
of a debugger ... 331

Listing 165 A configASSERT() definition that records the source code line that failed an
assertion ... 331

Listing 166. The uxTaskGetSystemState() API function prototype 339

Listing 167. The TaskStatus_t structure ... 341

Listing 168. The vTaskList() API function prototype ... 343

Listing 169. The vTaskGetRunTimeStats() API function prototype 344

Listing 170. 16-bit timer overflow interrupt handler used to count timer overflows 346

Listing 171. Macros added to FreeRTOSConfig.h to enable the collection of run-time
statistics.. 346

Listing 172. The task that prints out the collected run-time statistics 347

Listing 173. The uxTaskGetStackHighWaterMark() API function prototype 359

Listing 174. The stack overflow hook function prototype .. 360

List of Tables

Table 1. FreeRTOS source files to include in the project ... 20

Table 2. Port specific data types used by FreeRTOS ... 21

Table 3. Macro prefixes ... 23

Table 4. Common macro definitions ... 23

Table 5. vPortDefineHeapRegions() parameters .. 37

Table 6. xPortGetFreeHeapSize() return value .. 41

Table 7. xPortGetMinimumEverFreeHeapSize() return value... 42

Table 8. xTaskCreate() parameters and return value ... 48

Table 9. vTaskDelay() parameters ... 67

xxiv

Table 10. vTaskDelayUntil() parameters .. 71

Table 11. vTaskPrioritySet() parameters .. 79

Table 12. uxTaskPriorityGet() parameters and return value ... 80

Table 13. vTaskDelete() parameters .. 85

Table 14. The FreeRTOSConfig.h settings that configure the kernel to use Prioritized
Pre-emptive Scheduling with Time Slicing .. 91

Table 15. An explanation of the terms used to describe the scheduling policy 92

Table 16. The FreeRTOSConfig.h settings that configure the kernel to use Prioritized
Pre-emptive Scheduling without Time Slicing.. 96

Table 17. The FreeRTOSConfig.h settings that configure the kernel to use co-operative
scheduling .. 98

Table 18. xQueueCreate() parameters and return value .. 108

Table 19. xQueueSendToFront() and xQueueSendToBack() function parameters and
return value ... 109

Table 20. xQueueReceive() function parameters and return values 112

Table 21. uxQueueMessagesWaiting() function parameters and return value 114

Table 22. Key to Figure 36 ... 124

Table 23. xQueueCreateSet() parameters and return value ... 133

Table 24. xQueueAddToSet() parameters and return value ... 134

Table 25. xQueueSelectFromSet() parameters and return value ... 136

Table 26. xQueueOverwrite() parameters and return value .. 145

Table 27. xTimerCreate() parameters and return value .. 158

Table 28. xTimerStart() parameters and return value ... 160

Table 29. vTimerSetTimerID() parameters ... 166

Table 30. pvTimerGetTimerID() parameters and return value .. 167

Table 31. xTimerChangePeriod() parameters and return value .. 171

Table 32. xTimerReset() parameters and return value ... 175

Table 33. xSemaphoreCreateBinary() Return Value .. 194

Table 34. xSemaphoreTake() parameters and return value ... 195

Table 35. xSemaphoreGiveFromISR() parameters and return value 197

Table 36. xSemaphoreCreateCounting() parameters and return value 210

Table 37. xTimerPendFunctionCallFromISR() parameters and return value 214

Table 38. xQueueSendToFrontFromISR() and xQueueSendToBackFromISR()
parameters and return values ... 220

Table 39. Constants that control interrupt nesting .. 228

Table 40. xTaskResumeAll() return value .. 241

Table 41. xSemaphoreCreateMutex() return value ... 245

Table 42, xEventGroupCreate() return value .. 271

Table 43, xEventGroupSetBits() parameters and return value ... 272

Table 44, xEventGroupSetBitsFromISR() parameters and return value 273

Table 45, The Effect of the uxBitsToWaitFor and xWaitForAllBits Parameters 275

Table 46, xEventGroupWaitBits() parameters and return value .. 277

Table 47, xEventGroupSync() parameters and return value ... 288

Table 48. xTaskNotifyGive() parameters and return value ... 299

 xxv

Table 49. vTaskNotifyGiveFromISR() parameters and return value 299

Table 50. ulTaskNotifyTake() parameters and return value .. 301

Table 51. xTaskNotify() parameters and return value .. 308

Table 52. Valid xTaskNotify() eNotifyAction Parameter Values, and Their Resultant
Effect on the Receiving Taskôs Notification Value ... 309

Table 53. xTaskNotifyWait() parameters and return value ... 310

Table 54. Macros used in the collection of run-time statistics ... 338

Table 55, uxTaskGetSystemState() parameters and return value .. 340

Table 56. TaskStatus_t structure members .. 341

Table 57. vTaskList() parameters .. 343

Table 58. vTaskGetRunTimeStats() parameters .. 344

Table 59. A selection of the most commonly used trace hook macros 348

Table 60. uxTaskGetStackHighWaterMark() parameters and return value 359

xxvi

List of Notation

ADC Analog to Digital Converter

API Application Programming Interface

DMA Direct Memory Access

FAQ Frequently Asked Question

FIFO First In First Out

HMI Human Machine Interface

IDE Integrated Development Environment

IRQ Interrupt Request

ISR Interrupt Service Routine

LCD Liquid Crystal Display

MCU Microcontroller

RMS Rate Monotonic Scheduling

RTOS Real-time Operating System

SIL Safety Integrity Level

SPI Serial Peripheral Interface

TCB Task Control Block

UART Universal Asynchronous Receiver/Transmitter

 1

Preface

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

2

Multitasking in Small Embedded Systems

About FreeRTOS

FreeRTOS is solely owned, developed and maintained by Real Time Engineers Ltd. Real

Time Engineers Ltd. have been working in close partnership with the worldôs leading chip

companies for well over a decade to provide you award winning, commercial grade, and

completely free high quality software.

FreeRTOS is ideally suited to deeply embedded real-time applications that use

microcontrollers or small microprocessors. This type of application normally includes a mix of

both hard and soft real-time requirements.

Soft real-time requirements are those that state a time deadlineðbut breaching the deadline

would not render the system useless. For example, responding to keystrokes too slowly might

make a system seem annoyingly unresponsive without actually making it unusable.

Hard real-time requirements are those that state a time deadlineðand breaching the deadline

would result in absolute failure of the system. For example, a driverôs airbag has the potential

to do more harm than good if it responded to crash sensor inputs too slowly.

FreeRTOS is a real-time kernel (or real-time scheduler) on top of which embedded

applications can be built to meet their hard real-time requirements. It allows applications to be

organized as a collection of independent threads of execution. On a processor that has only

one core, only a single thread can be executing at any one time. The kernel decides which

thread should be executing by examining the priority assigned to each thread by the

application designer. In the simplest case, the application designer could assign higher

priorities to threads that implement hard real-time requirements, and lower priorities to threads

that implement soft real-time requirements. This would ensure that hard real-time threads are

always executed ahead of soft real-time threads, but priority assignment decisions are not

always that simplistic.

Do not be concerned if you do not fully understand the concepts in the previous paragraph yet.

The following chapters provide a detailed explanation, with many examples, to help you

understand how to use a real-time kernel, and how to use FreeRTOS, in particular.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 3

Value Proposition

The unprecedented global success of FreeRTOS comes from its compelling value proposition;

FreeRTOS is professionally developed, strictly quality controlled, robust, supported, does not

contain any intellectual property ownership ambiguity, and is truly free to use in commercial

applications without any requirement to expose your proprietary source code. You can take a

product to market using FreeRTOS without even talking to Real Time Engineers ltd., let alone

paying any fees, and thousands of people do just that. If, at any time, you would like to

receive additional backup, or if your legal team require additional written guarantees or

indemnification, then there is a simple low cost commercial upgrade path. Peace of mind

comes with the knowledge that you can opt to take the commercial route at any time you

choose.

A Note About Terminology

In FreeRTOS, each thread of execution is called a ótaskô. There is no consensus on

terminology within the embedded community, but I prefer ótaskô to óthread,ô as thread can have

a more specific meaning in some fields of application.

Why Use a Real-time Kernel?

There are many well established techniques for writing good embedded software without the

use of a kernel, and, if the system being developed is simple, then these techniques might

provide the most appropriate solution. In more complex cases, it is likely that using a kernel

would be preferable, but where the crossover point occurs will always be subjective.

As already described, task prioritization can help ensure an application meets its processing

deadlines, but a kernel can bring other less obvious benefits, too. Some of these are listed

very briefly below.

¶ Abstracting away timing information

The kernel is responsible for execution timing and provides a time-related API to the

application. This allows the structure of the application code to be simpler, and the overall

code size to be smaller.

¶ Maintainability/Extensibility

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

4

Abstracting away timing details results in fewer interdependencies between modules, and

allows the software to evolve in a controlled and predictable way. Also, the kernel is

responsible for timing, so application performance is less susceptible to changes in the

underlying hardware.

¶ Modularity

Tasks are independent modules, each of which should have a well-defined purpose.

¶ Team development

Tasks should also have well-defined interfaces, allowing easier development by teams.

¶ Easier testing

If tasks are well-defined independent modules with clean interfaces, they can be tested in

isolation.

¶ Code reuse

Greater modularity and fewer interdependencies results in code that can be reused with

less effort.

¶ Improved efficiency

Using a kernel allows software to be completely event-driven, so no processing time is

wasted by polling for events that have not occurred. Code executes only when there is

something that must be done.

Counter to the efficiency saving is the need to process the RTOS tick interrupt, and to

switch execution from one task to another. However, applications that donôt make use of an

RTOS normally include some form of tick interrupt anyway.

¶ Idle time

The Idle task is created automatically when the scheduler is started. It executes whenever

there are no application tasks wishing to execute. The idle task can be used to measure

spare processing capacity, to perform background checks, or simply to place the processor

into a low-power mode.

¶ Power Management

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 5

The efficiency gains that are obtained by using an RTOS allow the processor to spend

more time in a low power mode.

Power consumption can be decreased significantly by placing the processor into a low

power state each time the Idle task runs. FreeRTOS also has a special tick-less mode.

Using the tick-less mode allows the processor to enter a lower power mode than would

otherwise be possible, and remain in the low power mode for longer.

¶ Flexible interrupt handling

Interrupt handlers can be kept very short by deferring processing to either a task created by

the application writer, or the FreeRTOS daemon task.

¶ Mixed processing requirements

Simple design patterns can achieve a mix of periodic, continuous and event-driven

processing within an application. In addition, hard and soft real-time requirements can be

met by selecting appropriate task and interrupt priorities.

FreeRTOS Features

FreeRTOS has the following standard features:

¶ Pre-emptive or co-operative operation

¶ Very flexible task priority assignment

¶ Flexible, fast and light weight task notification mechanism

¶ Queues

¶ Binary semaphores

¶ Counting semaphores

¶ Mutexes

¶ Recursive Mutexes

¶ Software timers

¶ Event groups

¶ Tick hook functions

¶ Idle hook functions

¶ Stack overflow checking

¶ Trace recording

¶ Task run-time statistics gathering

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

6

¶ Optional commercial licensing and support

¶ Full interrupt nesting model (for some architectures)

¶ A tick-less capability for extreme low power applications

¶ Software managed interrupt stack when appropriate (this can help save RAM)

Licensing, and The FreeRTOS, OpenRTOS, and SafeRTOS Family

The FreeRTOS open source license is designed to ensure:

1. FreeRTOS can be used in commercial applications.

2. FreeRTOS itself remains freely available to everybody.

3. FreeRTOS users retain ownership of their intellectual property.

See http://www.FreeRTOS.org/license for the latest open source license information.

OpenRTOS is a commercially licensed version of FreeRTOS provided under license from Real

Time Engineers Ltd. by a third party.

SafeRTOS shares the same usage model as FreeRTOS, but has been developed in

accordance with the practices, procedures, and processes necessary to claim compliance with

various internationally recognized safety related standards.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
http://www.freertos.org/

 7

Included Source Files and Projects

Obtaining the Examples that Accompany this Book

Source code, pre-configured project files, and full build instructions for all the examples

presented in this book are provided in an accompanying zip file. You can download the zip file

from http://www.FreeRTOS.org/Documentation/code if you did not receive a copy with the

book. The zip file may not include the latest version of FreeRTOS.

The screen shots included in this book were taken while the examples were executing in a

Microsoft Windows environment, using the FreeRTOS Windows port. The project that uses

the FreeRTOS Windows port is pre-configured to build using the free Express edition of Visual

Studio, which can be downloaded from http://www.microsoft.com/express. Note that, while the

FreeRTOS Windows port provides a convenient evaluation, test and development platform, it

does not provide true real-time behavior.

http://www.freertos.org/Documentation/code
http://www.microsoft.com/express

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

8

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 9

Chapter 1

The FreeRTOS Distribution

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

10

1.1 Chapter Introduction and Scope

FreeRTOS is distributed as a single zip file archive that contains all the official FreeRTOS

ports, and a large number of pre-configured demo applications.

Scope

This chapter aims to help users orientate themselves with the FreeRTOS files and directories

by:

¶ Providing a top level view of the FreeRTOS directory structure.

¶ Describing which files are actually required by any particular FreeRTOS project.

¶ Introducing the demo applications.

¶ Providing information on how a new project can be created.

The description here relates only to the official FreeRTOS distribution. The examples that

come with this book use a slightly different organization.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 11

1.2 Understanding the FreeRTOS Distribution

Definition: FreeRTOS Port

FreeRTOS can be built with approximately twenty different compilers, and can run on more

than thirty different processor architectures. Each supported combination of compiler and

processor is considered to be a separate FreeRTOS port.

Building FreeRTOS

FreeRTOS can be thought of as a library that provides multi-tasking capabilities to what would

otherwise be a bare metal application.

FreeRTOS is supplied as a set of C source files. Some of the source files are common to all

ports, while others are specific to a port. Build the source files as part of your project to make

the FreeRTOS API available to your application. To make this easy for you, each official

FreeRTOS port is provided with a demo application. The demo application is pre-configured

to build the correct source files, and include the correct header files.

Demo applications should build óout of the boxô, although some demos are older than others,

and sometimes a change in the build tools made since the demo was released can cause an

issue. Section 1.3 describes the demo applications.

FreeRTOSConfig.h

FreeRTOS is configured by a header file called FreeRTOSConfig.h.

FreeRTOSConfig.h is used to tailor FreeRTOS for use in a specific application. For example,

FreeRTOSConfig.h contains constants such as configUSE_PREEMPTION, the setting of

which defines whether the co-operative or pre-emptive scheduling algorithm will be used1. As

FreeRTOSConfig.h contains application specific definitions, it should be located in a directory

that is part of the application being built, not in a directory that contains the FreeRTOS source

code.

A demo application is provided for every FreeRTOS port, and every demo application contains

a FreeRTOSConfig.h file. It is therefore never necessary to create a FreeRTOSConfig.h file

1 Scheduling algorithms are described in section 3.12.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

12

from scratch. Instead, it is recommended to start with, then adapt, the FreeRTOSConfig.h

used by the demo application provided for the FreeRTOS port in use.

The Official FreeRTOS Distribution

FreeRTOS is distributed in a single zip file. The zip file contains source code for all the

FreeRTOS ports, and project files for all the FreeRTOS demo applications. It also contains a

selection of FreeRTOS+ ecosystem components, and a selection of FreeRTOS+ ecosystem

demo applications.

Do not be put off by the number of files in the FreeRTOS distribution! Only a very small

number of files are required in any one application.

The Top Directories in the FreeRTOS Distribution

The first and second level directories of the FreeRTOS distribution are shown and described in

Figure 1.

FreeRTOS
 ƅ ƅ
 ƅ ƊƄSource Directory containing the FreeRTOS source files
 ƅ ƅ
 ƅ ƈƄDemo Directory containing pre - configured and port specific FreeRTOS demo projects
 ƅ
FreeRTOS- Plus
 ƅ
 ƊƄSource Directory containing source code for some FreeRTOS+ ecosystem components
 ƅ
 ƈƄDemo Directory containing demo projects for FreeRTOS+ ecosystem components

Figure 1. Top level directories within the FreeRTOS distribution

The zip file only contains one copy of the FreeRTOS source files; all the FreeRTOS demo

projects, and all the FreeRTOS+ demo projects, expect to find the FreeRTOS source files in

the FreeRTOS/Source directory, and may not build if the directory structure is changed.

FreeRTOS Source Files Common to All Ports

The core FreeRTOS source code is contained in just two C files that are common to all the

FreeRTOS ports. These are called tasks.c, and list.c, and they are located directly in the

FreeRTOS/Source directory, as shown in Figure 2. In addition to these two files, the following

source files are located in the same directory:

¶ queue.c

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 13

queue.c provides both queue and semaphore services, as described later in this book.

queue.c is nearly always required.

¶ timers.c

timers.c provides software timer functionality, as described later in this book. It need only

be included in the build if software timers are actually going to be used.

¶ event_groups.c

event_groups.c provides event group functionality, as described later in this book. It need

only be included in the build if event groups are actually going to be used.

¶ croutine.c

croutine.c implements the FreeRTOS co-routine functionality. It need only be included in

the build if co-routines are actually going to be used. Co-routines were intended for use on

very small microcontrollers, are rarely used now, and are therefore not maintained to the

same level as other FreeRTOS features. Co-routines are not described in this book.

FreeRTOS
 ƅ
 ƈƄSource
 ƅ
 ƊƄtasks.c FreeRTOS s ource file - always required
 ƊƄlist.c FreeRTOS s ource file - always required
 ƊƄqueue.c FreeRTOS s ource file - nearly always required
 ƊƄtimers.c FreeRTOS s ource file - optional
 ƊƄevent_groups.c FreeRTOS s ource file - optional
 ƈƄcroutine.c FreeRTOS s ource file - optional

Figure 2. Core FreeRTOS source files within the FreeRTOS directory tree

It is recognized that the file names may result in name space clashes, as many projects will

already include files that have the same names. It is however considered that changing the

names of the files now would be problematic, as to do so would break compatibility with the

many thousands of projects that use FreeRTOS, as well as automation tools, and IDE plug-

ins.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

14

FreeRTOS Source Files Specific to a Port

Source files specific to a FreeRTOS port are contained within the FreeRTOS/Source/portable

directory. The portable directory is arranged as a hierarchy, first by compiler, then by

processor architecture. The hierarchy is shown in Figure 3.

If you are running FreeRTOS on a processor with architecture óarchitectureô using compiler

ócompilerô then, in addition to the core FreeRTOS source files, you must also build the files

located in FreeRTOS/Source/portable/[compiler]/[architecture] directory.

As will be described in Chapter 2, Heap Memory Management, FreeRTOS also considers

heap memory allocation to be part of the portable layer. Projects that use a FreeRTOS

version older than V9.0.0 must include a heap memory manager. From FreeRTOS V9.0.0 a

heap memory manager is only required if configSUPPORT_DYNAMIC_ALLOCATION is set to

1 in FreeRTOSConfig.h, or if configSUPPORT_DYNAMIC_ALLOCATION is left undefined.

FreeRTOS provides five example heap allocation schemes. The five schemes are named

heap_1 to heap_5, and are implemented by the source files heap_1.c to heap_5.c

respectively. The example heap allocation schemes are contained in the

FreeRTOS/Source/portable/MemMang directory. If you have configured FreeRTOS to use

dynamic memory allocation then it is necessary to build one of these five source files in your

project, unless your application provides an alternative implementation.

FreeRTOS
 ƅ
 ƈƄSource
 ƅ
 ƈƄportable Director y containing all port specific source files
 ƅ
 ƊƄMemMang Directory containing the 5 alternative heap allocation source files
 ƅ
 ƊƄ[compiler 1] Directory containing port files specific to compiler 1
 ƅ ƅ
 ƅ ƊƄ[architecture 1] Contains files for the compiler 1 architecture 1 port
 ƅ ƊƄ[architecture 2] Contains files for the compiler 1 architecture 2 port
 ƅ ƈƄ[architecture 3] Contains files for the compiler 1 architecture 3 port
 ƅ
 ƈƄ[compiler 2] Directory containing port files specific to compiler 2
 ƅ
 ƊƄ[architecture 1] Contains files for the compiler 2 architecture 1 port
 ƊƄ[architecture 2] Contains files for the compiler 2 architecture 2 port
 ƈƄ[etc.]

Figure 3. Port specific source files within the FreeRTOS directory tree

Include Paths

FreeRTOS requires three directories to be included in the compilerôs include path. These are:

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 15

1. The path to the core FreeRTOS header files, which is always

FreeRTOS/Source/include.

2. The path to the source files that are specific to the FreeRTOS port in use. As

described above, this is FreeRTOS/Source/portable/[compiler]/[architecture].

3. A path to the FreeRTOSConfig.h header file.

Header Files

A source file that uses the FreeRTOS API must include óFreeRTOS.hô, followed by the header

file that contains the prototype for the API function being usedðeither ótask.hô, óqueue.hô,

ósemphr.hô, ótimers.hô or óevent_groups.hô.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

16

1.3 Demo Applications

Each FreeRTOS port comes with at least one demo application that should build with no errors

or warnings being generated, although some demos are older than others, and sometimes a

change in the build tools made since the demo was released can cause an issue.

A note to Linux users: FreeRTOS is developed and tested on a Windows host. Occasionally

this results in build errors when demo projects are built on a Linux host. Build errors are

almost always related to the case of letters used when referencing file names, or the direction

of slash characters used in file paths. Please use the FreeRTOS contact form

(http://www.FreeRTOS.org/contact) to alert us to any such errors.

The demo application has several purposes:

¶ To provide an example of a working and pre-configured project, with the correct files

included, and the correct compiler options set.

¶ To allow óout of the boxô experimentation with minimal setup or prior knowledge.

¶ As a demonstration of how the FreeRTOS API can be used.

¶ As a base from which real applications can be created.

Each demo project is located in a unique sub-directory under the FreeRTOS/Demo directory.

The name of the sub-directory indicates the port to which the demo project relates.

Every demo application is also described by a web page on the FreeRTOS.org web site. The

web page includes information on:

¶ How to locate the project file for the demo within the FreeRTOS directory structure.

¶ Which hardware the project is configured to use.

¶ How to set up the hardware for running the demo.

¶ How to build the demo.

¶ How the demo is expected to behave.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html
http://www.freertos.org/contact

 17

All the demo projects create a subset of the common demo tasks, the implementations of

which are contained in the FreeRTOS/Demo/Common/Minimal directory. The common demo

tasks exist purely to demonstrate how the FreeRTOS API can be usedðthey do not

implement any particular useful functionality.

More recent demo projects can also build a beginners óblinkyô project. Blinky projects are very

basic. Typically they will create just two tasks and one queue.

Every demo project includes a file called main.c. This contains the main() function, from where

all the demo application tasks are created. See the comments within the individual main.c files

for information specific to that demo.

The FreeRTOS/Demo directory hierarchy is shown in Figure 4.

FreeRTOS
 ƅ
 ƈƄDemo Directory containing all the demo projects
 ƅ
 ƊƄ[Demo x] Contains the project file that builds demo óxô
 ƅ
 ƊƄ[Demo y] Contains the project file that builds demo óyô
 ƅ
 ƊƄ[Demo z] Contains the project file that builds demo ózô
 ƅ
 ƈƄCommon Contains files that are built by all the demo applications

Figure 4. The demo directory hierarchy

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

18

1.4 Creating a FreeRTOS Project

Adapting One of the Supplied Demo Projects

Every FreeRTOS port comes with at least one pre-configured demo application that should

build with no errors or warnings. It is recommended that new projects are created by adapting

one of these existing projects; this will allow the project to have the correct files included, the

correct interrupt handlers installed, and the correct compiler options set.

To start a new application from an existing demo project:

1. Open the supplied demo project and ensure that it builds and executes as expected.

2. Remove the source files that define the demo tasks. Any file that is located within the

Demo/Common directory can be removed from the project.

3. Delete all the function calls within main(), except prvSetupHardware() and

vTaskStartScheduler(), as shown in Listing 1.

4. Check the project still builds.

Following these steps will create a project that includes the correct FreeRTOS source files, but

does not define any functionality.

int main(void)

{

 /* Perform any hardware setup necessary. */

 prvSetupHardware ();

 /* --- APPLICATION TASKS CAN BE CREATED HERE --- */

 /* Start the created tasks running. */

 vTaskStartScheduler();

 /* Execution will only reach here if there was insufficient heap to

 start the scheduler. */

 for(;;);

 return 0;

}

Listing 1. The template for a new main() function

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 19

Creating a New Project from Scratch

As already mentioned, it is recommended that new projects are created from an existing demo

project. If this is not desirable, then a new project can be created using the following

procedure:

1. Using your chosen tool chain, create a new project that does not yet include any

FreeRTOS source files.

2. Ensure the new project can be built, downloaded to your target hardware, and

executed.

3. Only when you are sure you already have a working project, add the FreeRTOS source

files detailed in Table 1 to the project.

4. Copy the FreeRTOSConfig.h header file used by the demo project provided for the port

in use into the project directory.

5. Add the following directories to the path the project will search to locate header files:

¶ FreeRTOS/Source/include

¶ FreeRTOS/Source/portable/[compiler]/[architecture] (where [compiler] and

[architecture] are correct for your chosen port)

¶ The directory containing the FreeRTOSConfig.h header file

6. Copy the compiler settings from the relevant demo project.

7. Install any FreeRTOS interrupt handlers that might be necessary. Use the web page

that describes the port in use, and the demo project provided for the port in use, as a

reference.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

20

Table 1. FreeRTOS source files to include in the project

File Location

tasks.c FreeRTOS/Source

queue.c FreeRTOS/Source

list.c FreeRTOS/Source

timers.c FreeRTOS/Source

event_groups.c FreeRTOS/Source

All C and assembler files FreeRTOS/Source/portable/[compiler]/[architecture]

heap_n.c FreeRTOS/Source/portable/MemMang, where n is either 1, 2,

3, 4 or 5. This file became optional from FreeRTOS V9.0.0.

Projects that use a FreeRTOS version older than V9.0.0 must build one of the heap_n.c files.

From FreeRTOS V9.0.0 a heap_n.c file is only required if

configSUPPORT_DYNAMIC_ALLOCATION is set to 1 in FreeRTOSConfig.h or if

configSUPPORT_DYNAMIC_ALLOCATION is left undefined. Refer to Chapter 2, Heap

Memory Management, for more information.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 21

1.5 Data Types and Coding Style Guide

Data Types

Each port of FreeRTOS has a unique portmacro.h header file that contains (amongst other

things) definitions for two port specific data types: TickType_t and BaseType_t. These data

types are described in Table 2.

Table 2. Port specific data types used by FreeRTOS

Macro or typedef
used

Actual type

TickType_t FreeRTOS configures a periodic interrupt called the tick interrupt.

The number of tick interrupts that have occurred since the FreeRTOS

application started is called the tick count. The tick count is used as a

measure of time.

The time between two tick interrupts is called the tick period. Times are

specified as multiples of tick periods.

TickType_t is the data type used to hold the tick count value, and to

specify times.

TickType_t can be either an unsigned 16-bit type, or an unsigned 32-bit

type, depending on the setting of configUSE_16_BIT_TICKS within

FreeRTOSConfig.h. If configUSE_16_BIT_TICKS is set to 1, then

TickType_t is defined as uint16_t. If configUSE_16_BIT_TICKS is set to

0 then TickType_t is defined as uint32_t.

Using a 16-bit type can greatly improve efficiency on 8-bit and 16-bit

architectures, but severely limits the maximum block period that can be

specified. There is no reason to use a 16-bit type on a 32-bit

architecture.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

22

Table 2. Port specific data types used by FreeRTOS

Macro or typedef
used

Actual type

BaseType_t This is always defined as the most efficient data type for the architecture.

Typically, this is a 32-bit type on a 32-bit architecture, a 16-bit type on a

16-bit architecture, and an 8-bit type on an 8-bit architecture.

BaseType_t is generally used for return types that can take only a very

limited range of values, and for pdTRUE/pdFALSE type Booleans.

Some compilers make all unqualified char variables unsigned, while others make them signed.

For this reason, the FreeRTOS source code explicitly qualifies every use of char with either

ósignedô or óunsignedô, unless the char is used to hold an ASCII character, or a pointer to char

is used to point to a string.

Plain int types are never used.

Variable Names

Variables are prefixed with their type: ócô for char, ósô for int16_t (short), ólô int32_t (long), and óxô

for BaseType_t and any other non-standard types (structures, task handles, queue handles,

etc.).

If a variable is unsigned, it is also prefixed with a óuô. If a variable is a pointer, it is also prefixed

with a ópô. For example, a variable of type uint8_t will be prefixed with óucô, and a variable of

type pointer to char will be prefixed with ópcô.

Function Names

Functions are prefixed with both the type they return, and the file they are defined within. For

example:

¶ vTaskPrioritySet() returns a void and is defined within task.c.

¶ xQueueReceive() returns a variable of type BaseType_t and is defined within queue.c.

¶ pvTimerGetTimerID() returns a pointer to void and is defined within timers.c.

File scope (private) functions are prefixed with óprvô.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 23

Formatting

One tab is always set to equal four spaces.

Macro Names

Most macros are written in upper case, and prefixed with lower case letters that indicate where

the macro is defined. Table 3 provides a list of prefixes.

Table 3. Macro prefixes

Prefix Location of macro definition

port (for example, portMAX_DELAY) portable.h or

portmacro.h

task (for example, taskENTER_CRITICAL()) task.h

pd (for example, pdTRUE) projdefs.h

config (for example, configUSE_PREEMPTION) FreeRTOSConfig.h

err (for example, errQUEUE_FULL) projdefs.h

Note that the semaphore API is written almost entirely as a set of macros, but follows the

function naming convention, rather than the macro naming convention.

The macros defined in Table 4 are used throughout the FreeRTOS source code.

Table 4. Common macro definitions

Macro Value

pdTRUE 1

pdFALSE 0

pdPASS 1

pdFAIL 0

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

24

Rationale for Excessive Type Casting

The FreeRTOS source code can be compiled with many different compilers, all of which differ

in how and when they generate warnings. In particular, different compilers want casting to be

used in different ways. As a result, the FreeRTOS source code contains more type casting

than would normally be warranted.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 25

Chapter 2

Heap Memory Management

From FreeRTOS V9.0.0 FreeRTOS applications can be completely statically allocated,

removing the need to include a heap memory manager

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

26

2.1 Chapter Introduction and Scope

Prerequisites

FreeRTOS is provided as a set of C source files, so being a competent C programmer is a

prerequisite for using FreeRTOS, and therefore this chapter assumes the reader is familiar

with concepts such as:

¶ How a C project is built, including the different compiling and linking phases.

¶ What the stack and heap are.

¶ The standard C library malloc() and free() functions.

Dynamic Memory Allocation and its Relevance to FreeRTOS

From FreeRTOS V9.0.0 kernel objects can be allocated statically at compile time, or dynamically at run time:

Following chapters of this book will introduce kernel objects such as tasks, queues,

semaphores and event groups. To make FreeRTOS as easy to use as possible, these kernel

objects are not statically allocated at compile-time, but dynamically allocated at run-time;

FreeRTOS allocates RAM each time a kernel object is created, and frees RAM each time a

kernel object is deleted. This policy reduces design and planning effort, simplifies the API, and

minimizes the RAM footprint.

This chapter discusses dynamic memory allocation. Dynamic memory allocation is a C

programming concept, and not a concept that is specific to either FreeRTOS or multitasking. It

is relevant to FreeRTOS because kernel objects are allocated dynamically, and the dynamic

memory allocation schemes provided by general purpose compilers are not always suitable for

real-time applications.

Memory can be allocated using the standard C library malloc() and free() functions, but they

may not be suitable, or appropriate, for one or more of the following reasons:

¶ They are not always available on small embedded systems.

¶ Their implementation can be relatively large, taking up valuable code space.

¶ They are rarely thread-safe.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 27

¶ They are not deterministic; the amount of time taken to execute the functions will differ

from call to call.

¶ They can suffer from fragmentation1.

¶ They can complicate the linker configuration.

¶ They can be the source of difficult to debug errors if the heap space is allowed to grow

into memory used by other variables.

Options for Dynamic Memory Allocation

From FreeRTOS V9.0.0 kernel objects can be allocated statically at compile time, or dynamically at run time:

Early versions of FreeRTOS used a memory pools allocation scheme, whereby pools of

different size memory blocks were pre-allocated at compile time, then returned by the memory

allocation functions. Although this is a common scheme to use in real-time systems, it proved

to be the source of many support requests, predominantly because it could not use RAM

efficiently enough to make it viable for really small embedded systemsðso the scheme was

dropped.

FreeRTOS now treats memory allocation as part of the portable layer (as opposed to part of

the core code base). This is in recognition of the fact that different embedded systems have

varying dynamic memory allocation and timing requirements, so a single dynamic memory

allocation algorithm will only ever be appropriate for a subset of applications. Also, removing

dynamic memory allocation from the core code base enables application writerôs to provide

their own specific implementations, when appropriate.

When FreeRTOS requires RAM, instead of calling malloc(), it calls pvPortMalloc(). When

RAM is being freed, instead of calling free(), the kernel calls vPortFree(). pvPortMalloc() has

the same prototype as the standard C library malloc() function, and vPortFree() has the same

prototype as the standard C library free() function.

pvPortMalloc() and vPortFree() are public functions, so can also be called from application

code.

1 The heap is considered to be fragmented if the free RAM within the heap is broken up into small
blocks that are separated from each other. If the heap is fragmented, then an attempt to allocate a
block will fail if no single free block in the heap is large enough to contain the block, even if the total size
of all the separate free blocks in the heap is many times greater than the size of the block that cannot be
allocated.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

28

From FreeRTOS V9.0.0 kernel objects can be allocated statically at compile time, or dynamically at run time:

FreeRTOS comes with five example implementations of both pvPortMalloc() and vPortFree(),

all of which are documented in this chapter. FreeRTOS applications can use one of the

example implementations, or provide their own.

The five examples are defined in the heap_1.c, heap_2.c, heap_3.c, heap_4.c and heap_5.c

source files respectively, all of which are located in the FreeRTOS/Source/portable/MemMang

directory.

Scope

This chapter aims to give readers a good understanding of:

¶ When FreeRTOS allocates RAM.

¶ The five example memory allocation schemes supplied with FreeRTOS.

¶ Which memory allocation scheme to select.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 29

2.2 Example Memory Allocation Schemes

From FreeRTOS V9.0.0 FreeRTOS applications can be completely statically allocated, removing the
need to include a heap memory manager

Heap_1

It is common for small dedicated embedded systems to only create tasks and other kernel

objects before the scheduler has been started. When this is the case, memory only gets

dynamically allocated by the kernel before the application starts to perform any real-time

functionality, and the memory remains allocated for the lifetime of the application. This means

the chosen allocation scheme does not have to consider any of the more complex memory

allocation issues, such as determinism and fragmentation, and can instead just consider

attributes such as code size and simplicity.

Heap_1.c implements a very basic version of pvPortMalloc(), and does not implement

vPortFree(). Applications that never delete a task, or other kernel object, have the potential to

use heap_1.

Some commercially critical and safety critical systems that would otherwise prohibit the use of

dynamic memory allocation also have the potential to use heap_1. Critical systems often

prohibit dynamic memory allocation because of the uncertainties associated with non-

determinism, memory fragmentation, and failed allocationsðbut Heap_1 is always

deterministic, and cannot fragment memory.

The heap_1 allocation scheme subdivides a simple array into smaller blocks, as calls to

pvPortMalloc() are made. The array is called the FreeRTOS heap.

The total size (in bytes) of the array is set by the definition configTOTAL_HEAP_SIZE within

FreeRTOSConfig.h. Defining a large array in this manner can make the application appear to

consume a lot of RAMðeven before any memory has been allocated from the array.

Each created task requires a task control block (TCB) and a stack to be allocated from the

heap. Figure 5 demonstrates how heap_1 subdivides the simple array as tasks are created.

Referring to Figure 5:

¶ A shows the array before any tasks have been createdðthe entire array is free.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

30

¶ B shows the array after one task has been created.

¶ C shows the array after three tasks have been created.

A B

TCB

Stack

C

TCB

Stack

TCB

Stack

TCB

Stack

c
o

n
fi
g

T
O

T
A

L
_

H
E

A
P

_
S

IZ
E

F
re

e
 s

p
a

c
e

Figure 5. RAM being allocated from the heap_1 array each time a task is created

Heap_2

Heap_2 is retained in the FreeRTOS distribution for backward compatibility, but its use is not

recommended for new designs. Consider using heap_4 instead of heap_2, as heap_4

provides enhanced functionality.

Heap_2.c also works by subdividing an array that is dimensioned by

configTOTAL_HEAP_SIZE. It uses a best fit algorithm to allocate memory and, unlike

heap_1, it does allow memory to be freed. Again, the array is statically declared, so will make

the application appear to consume a lot of RAM, even before any memory from the array has

been assigned.

The best fit algorithm ensures that pvPortMalloc() uses the free block of memory that is closest

in size to the number of bytes requested. For example, consider the scenario where:

¶ The heap contains three blocks of free memory that are 5 bytes, 25 bytes, and 100

bytes, respectively.

¶ pvPortMalloc() is called to request 20 bytes of RAM.

The smallest free block of RAM into which the requested number of bytes will fit is the 25-byte

block, so pvPortMalloc() splits the 25-byte block into one block of 20 bytes and one block of 5

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 31

bytes1, before returning a pointer to the 20-byte block. The new 5-byte block remains

available to future calls to pvPortMalloc().

Unlike heap_4, Heap_2 does not combine adjacent free blocks into a single larger block, so it

is more susceptible to fragmentation. However, fragmentation is not an issue if the blocks

being allocated and subsequently freed are always the same size. Heap_2 is suitable for an

application that creates and deletes tasks repeatedly, provided the size of the stack allocated

to the created tasks does not change.

A B C

TCB

Stack

TCB

Stack

TCB

Stack

c
o

n
fi
g

T
O

T
A

L
_

H
E

A
P

_
S

IZ
E

TCB

Stack

TCB

Stack

TCB

Stack

F
re

e
 s

p
a

c
e

TCB

Stack

TCB

Stack

F
re

e
 s

p
a

c
e

F
re

e
s
p

a
c
e

F
re

e
 s

p
a

c
e

Figure 6. RAM being allocated and freed from the heap_2 array as tasks are created
and deleted

Figure 6 demonstrates how the best fit algorithm works when a task is created, deleted, and

then created again. Referring to Figure 6:

1. A shows the array after three tasks have been created. A large free block remains at

the top of the array.

2. B shows the array after one of the tasks has been deleted. The large free block at the

top of the array remains. There are now also two smaller free blocks that were

previously allocated to the TCB and stack of the deleted task.

3. C shows the situation after another task has been created. Creating the task has

resulted in two calls to pvPortMalloc(), one to allocate a new TCB, and one to allocate

the task stack. Tasks are created using the xTaskCreate() API function, which is

1 This is an oversimplification, because heap_2 stores information on the block sizes within the heap
area, so the sum of the two split blocks will actually be less than 25.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

32

described in section 3.4. The calls to pvPortMalloc() occur internally within

xTaskCreate().

Every TCB is exactly the same size, so the best fit algorithm ensures that the block of

RAM previously allocated to the TCB of the deleted task is reused to allocate the TCB

of the new task.

The size of the stack allocated to the newly created task is identical to that allocated to

the previously deleted task, so the best fit algorithm ensures that the block of RAM

previously allocated to the stack of the deleted task is reused to allocate the stack of

the new task.

The larger unallocated block at the top of the array remains untouched.

Heap_2 is not deterministic, but is faster than most standard library implementations of

malloc() and free().

Heap_3

Heap_3.c uses the standard library malloc() and free() functions, so the size of the heap is

defined by the linker configuration, and the configTOTAL_HEAP_SIZE setting has no affect.

Heap_3 makes malloc() and free() thread-safe by temporarily suspending the FreeRTOS

scheduler. Thread safety, and scheduler suspension, are both topics that are covered in

Chapter 7, Resource Management.

Heap_4

Like heap_1 and heap_2, heap_4 works by subdividing an array into smaller blocks. As

before, the array is statically declared, and dimensioned by configTOTAL_HEAP_SIZE, so will

make the application appear to consume a lot of RAM, even before any memory has actually

been allocated from the array.

Heap_4 uses a first fit algorithm to allocate memory. Unlike heap_2, heap_4 combines

(coalescences) adjacent free blocks of memory into a single larger block, which minimizes the

risk of memory fragmentation.

The first fit algorithm ensures pvPortMalloc() uses the first free block of memory that is large

enough to hold the number of bytes requested. For example, consider the scenario where:

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 33

¶ The heap contains three blocks of free memory that, in the order in which they appear

in the array, are 5 bytes, 200 bytes, and 100 bytes, respectively.

¶ pvPortMalloc() is called to request 20 bytes of RAM.

The first free block of RAM into which the requested number of bytes will fit is the 200-byte

block, so pvPortMalloc() splits the 200-byte block into one block of 20 bytes, and one block of

180 bytes1, before returning a pointer to the 20-byte block. The new 180-byte block remains

available to future calls to pvPortMalloc().

Heap_4 combines (coalescences) adjacent free blocks into a single larger block, minimizing

the risk of fragmentation, and making it suitable for applications that repeatedly allocate and

free different sized blocks of RAM.

c
o

n
fi
g

T
O

T
A

L
_

H
E

A
P

_
S

IZ
E

B

TCB

Stack

TCB

Stack

F
re

e
 s

p
a

c
e

Free Space

C

TCB

Stack

Queue

TCB

Stack

F
re

e
 s

p
a

c
e

Free Space

D

TCB

Stack

Queue

TCB

Stack

F
re

e
 s

p
a

c
e

User
Free Space

E

TCB

Stack

TCB

Stack

F
re

e
 s

p
a

c
e

User
Free Space

Free Space

F

TCB

Stack

TCB

Stack

F
re

e
 s

p
a

c
e

Free Space

A

TCB

Stack

TCB

Stack

TCB

Stack

F
re

e
 s

p
a

c
e

Figure 7. RAM being allocated and freed from the heap_4 array

Figure 7 demonstrates how the heap_4 first fit algorithm with memory coalescence works, as

memory is allocated and freed. Referring to Figure 7:

1. A shows the array after three tasks have been created. A large free block remains at

the top of the array.

2. B shows the array after one of the tasks has been deleted. The large free block at the

top of the array remains. There is also a free block where the TCB and stack of the

1 This is an oversimplification, because heap_4 stores information on the block sizes within the heap
area, so the sum of the two split blocks will actually be less than 200 bytes.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

34

task that has been deleted were previously allocated. Note that, unlike when heap_2

was demonstrated, the memory freed when the TCB was deleted, and the memory

freed when the stack was deleted, does not remain as two separate free blocks, but is

instead combined to create a larger single free block.

3. C shows the situation after a FreeRTOS queue has been created. Queues are created

using the xQueueCreate() API function, which is described in section 4.3.

xQueueCreate() calls pvPortMalloc() to allocate the RAM used by the queue. As

heap_4 uses a first fit algorithm, pvPortMalloc() will allocate RAM from the first free

RAM block that is large enough to hold the queue, which in Figure 7, was the RAM

freed when the task was deleted. The queue does not consume all the RAM in the free

block however, so the block is split into two, and the unused portion remains available

to future calls to pvPortMalloc().

4. D shows the situation after pvPortMalloc() has been called directly from application

code, rather than indirectly by calling a FreeRTOS API function. The user allocated

block was small enough to fit in the first free block, which was the block between the

memory allocated to the queue, and the memory allocated to the following TCB.

The memory freed when the task was deleted has now been split into three separate

blocks; the first block holds the queue, the second block holds the user allocated

memory, and the third block remains free.

5. E show the situation after the queue has been deleted, which automatically frees the

memory that had been allocated to the deleted queue. There is now free memory on

either side of the user allocated block.

6. F shows the situation after the user allocated memory has also been freed. The

memory that had been used by the user allocated block has been combined with the

free memory on either side to create a larger single free block.

Heap_4 is not deterministic, but is faster than most standard library implementations of

malloc() and free().

Setting a Start Address for the Array Used By Heap_4

This section contains advanced level information. It is not necessary to read or understand

this section in order to use Heap_4.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 35

Sometimes it is necessary for an application writer to place the array used by heap_4 at a

specific memory address. For example, the stack used by a FreeRTOS task is allocated from

the heap, so it might be necessary to ensure the heap is located in fast internal memory,

rather than slow external memory.

By default, the array used by heap_4 is declared inside the heap_4.c source file, and its start

address is set automatically by the linker. However, if the

configAPPLICATION_ALLOCATED_HEAP compile time configuration constant is set to 1 in

FreeRTOSConfig.h, then the array must instead be declared by the application that is using

FreeRTOS. If the array is declared as part of the application, then the applicationôs writer can

set its start address.

If configAPPLICATION_ALLOCATED_HEAP is set to 1 in FreeRTOSConfig.h, then a uint8_t

array called ucHeap, and dimensioned by the configTOTAL_HEAP_SIZE setting, must be

declared in one of the applicationôs source files.

The syntax required to place a variable at a specific memory address is dependent on the

compiler in use, so refer to your compilerôs documentation. Examples for two compilers follow:

¶ Listing 2 shows the syntax required by the GCC compiler to declare the array, and

place the array in a memory section called .my_heap.

¶ Listing 3 shows the syntax required by the IAR compiler to declare the array, and place

the array at the absolute memory address 0x20000000.

uint8_t ucHeap[configTOTAL_HEAP_SIZE] __attribute__ ((section(".my_heap")));

Listing 2. Using GCC syntax to declare the array that will be used by heap_4, and
place the array in a memory section named .my_heap

uint8_t ucHeap[configTOTAL_HEAP_SIZE] @ 0x20000000 ;

Listing 3. Using IAR syntax to declare the array that will be used by heap_4, and
place the array at the absolute address 0x20000000

Heap_5

The algorithm used by heap_5 to allocate and free memory is identical to that used by heap_4.

Unlike heap_4, heap_5 is not limited to allocating memory from a single statically declared

array; heap_5 can allocate memory from multiple and separated memory spaces. Heap_5 is

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

36

useful when the RAM provided by the system on which FreeRTOS is running does not appear

as a single contiguous (without space) block in the systemôs memory map.

At the time of writing, heap_5 is the only provided memory allocation scheme that must be

explicitly initialized before pvPortMalloc() can be called. Heap_5 is initialized using the

vPortDefineHeapRegions() API function. When heap_5 is used, vPortDefineHeapRegions()

must be called before any kernel objects (tasks, queues, semaphores, etc.) can be created.

The vPortDefineHeapRegions() API Function

vPortDefineHeapRegions() is used to specify the start address and size of each separate

memory area that together makes up the total memory used by heap_5.

void vPortDefineHeapRegions(const HeapRegion_t * const pxHeapRegions) ;

Listing 4. The vPortDefineHeapRegions() API function prototype

Each separate memory areas is described by a structure of type HeapRegion_t. A description

of all the available memory areas is passed into vPortDefineHeapRegions() as an array of

HeapRegion_t structures.

typedef struct HeapRegion

{

 /* The s tart address of a block of memory that will be part of the heap.*/

 uint8_t *pucStartAddress;

 /* The s ize of the block of memory in bytes . */

 size_t xSizeInBytes;

} HeapRegion_t;

Listing 5. The HeapRegion_t structure

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 37

Table 5. vPortDefineHeapRegions() parameters

Parameter Name/
Returned Value

Description

pxHeapRegions A pointer to the start of an array of HeapRegion_t structures. Each

structure in the array describes the start address and length of a memory

area that will be part of the heap when heap_5 is used.

The HeapRegion_t structures in the array must be ordered by start

address; the HeapRegion_t structure that describes the memory area

with the lowest start address must be the first structure in the array, and

the HeapRegion_t structure that describes the memory area with the

highest start address must be the last structure in the array.

The end of the array is marked by a HeapRegion_t structure that has its

pucStartAddress member set to NULL.

By way of example, consider the hypothetical memory map shown in Figure 8 A, which

contains three separate blocks of RAM: RAM1, RAM2 and RAM3. It is assumed executable

code is placed in read only memory, which is not shown.

0x00000000

0x010000

0x01FFFF
RAM1 Remaining

Free

0x020000

0x027FFF
RAM2

32K bytes

0x030000

0x037FFF
RAM3

32K bytes

0xFFFFFFFF

RAM1 Containing

Variables

0x01nnnn

0x00000000

0x010000

0x01FFFF

RAM1

65K bytes

0x020000

0x027FFF
RAM2

32K bytes

0x030000

0x037FFF
RAM3

32K bytes

0xFFFFFFFF

0x00000000

0x010000

0x01FFFF

0x020000

0x027FFF
RAM2

32K bytes

0x030000

0x037FFF
RAM3

32K bytes

0xFFFFFFFF

RAM1 Containing

Variables, inc.

ucHeap[]

A B C

Figure 8 Memory Map

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

38

Listing 6 shows an array of HeapRegion_t structures that together describe the three blocks of

RAM in their entirety.

/* Define the start address and size of the three RAM regions. */

#define RAM1_START_ADDRESS ((uint8_t *) 0x00010000)

#define RAM1_SIZE (65 * 1024)

#define RAM2 _START_ADDRESS ((uint8_t *) 0x00020000)

#define RAM2 _SIZE (32 * 1024)

#define RAM3 _START_ADDRESS ((uint8_t *) 0x00030000)

#define RAM3 _SIZE (32 * 1024)

/* Create an array of HeapRegion_t definitions, with an index for each of the three

RAM regions, and terminating the array with a NULL address. The HeapRegion_t

structures must appear in start address order, with the structure that contains the

lowest start address appearing f irst. */

const HeapRegion_t xHeapRegions[] =

{

 { RAM1_START_ADDRESS, RAM1_SIZE },

 { RAM2_START_ADDRESS, RAM2_SIZE },

 { RAM3_START_ADDRESS, RAM3_SIZE },

 { NULL, 0 } /* Marks the end of the array. */

};

int main(void)

{

 /* Initialize heap_5. */

 vPortDefineHeapRegions (xHeapRegions);

 /* Add application code here. */

}

Listing 6. An array of HeapRegion_t structures that together describe the 3 regions
of RAM in their entirety

While Listing 6 correctly describes the RAM, it does not demonstrate a usable example,

because it allocates all the RAM to the heap, leaving no RAM free for use by other variables.

When a project is built, the linking phase of the build process allocates a RAM address to each

variable. The RAM available for use by the linker is normally described by a linker

configuration file, such as a linker script. In Figure 8 B it is assumed the linker script included

information on RAM1, but did not include information on RAM2 or RAM3. The linker has

therefore placed variables in RAM1, leaving only the portion of RAM1 above address

0x0001nnnn available for use by heap_5. The actual value of 0x0001nnnn will depend on the

combined size of all the variables included in the application being linked. The linker has left

all of RAM2 and all of RAM3 unused, leaving the whole of RAM2 and the whole of RAM3

available for use by heap_5.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 39

If the code shown in Listing 6 was used, the RAM allocated to heap_5 below address

0x0001nnnn would overlap the RAM used to hold variables. To avoid that, the first

HeapRegion_t structure within the xHeapRegions[] array could use a start address of

0x0001nnnn, rather than a start address of 0x00010000. However, that is not a recommended

solution because:

1. The start address might not be easy to determine.

2. The amount of RAM used by the linker might change in future builds, necessitating an

update to the start address used in the HeapRegion_t structure.

3. The build tools will not know, and therefore cannot warn the application writer, if the

RAM used by the linker and the RAM used by heap_5 overlap.

Listing 7 demonstrates a more convenient and maintainable example. It declares an array

called ucHeap. ucHeap is a normal variable, so it becomes part of the data allocated to RAM1

by the linker. The first HeapRegion_t structure in the xHeapRegions array describes the start

address and size of ucHeap, so ucHeap becomes part of the memory managed by heap_5.

The size of ucHeap can be increased until the RAM used by the linker consumes all of RAM1,

as shown in Figure 8 C.

/* Define the start address and size of the two RAM regions not used by the

linker . */

#define RAM2 _START_ADDRESS ((uint8_t *) 0x00020000)

#define RAM2 _SIZE (32 * 1024)

#define RAM3 _START_ADDRESS ((uint8_t *) 0x00030000)

#define RAM3 _SIZE (32 * 1024)

/* Declare an array that will be part of the heap used by heap_5. The array will be

placed in RAM1 by the linker. */

#define RAM1_HEAP_SIZE (30 * 1024)

static uint8_t ucHeap[RAM1_HEAP_SIZE];

/* Create an a rray of HeapRegion_t definitions. Whereas in Listing 6 the first entry

described all of RAM1, so heap_5 will have used all of RAM1, this time the first

entry only describes the ucHeap array, so heap_5 will only use the part of RAM1 that

contains the ucHea p array. The HeapRegion_t structures must still appear in start

address order, with the structure that contains the lowest start address appearing

first. */

const HeapRegion_t xHeapRegions[] =

{

 { ucHeap, RAM1_HEAP_SIZE },

 { RAM2_START_ADDRESS, RAM2_SIZE },

 { RAM3_START_ADDRESS, RAM3_SIZE },

 { NULL, 0 } /* Marks the end of the array. */

};

Listing 7. An array of HeapRegion_t structures that describe all of RAM2, all of
RAM3, but only part of RAM1

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

40

The advantages of the technique demonstrated in Listing 7 include:

1. It is not necessary to use a hard coded start address.

2. The address used in the HeapRegion_t structure will be set automatically, by the

linker, so will always be correct, even if the amount of RAM used by the linker changes

in future builds.

3. It is not possible for RAM allocated to heap_5 to overlap data placed into RAM1 by the

linker.

4. The application will not link if ucHeap is too big.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 41

2.3 Heap Related Utility Functions

The xPortGetFreeHeapSize() API Function

The xPortGetFreeHeapSize() API function returns the number of free bytes in the heap at the

time the function is called. It can be used to optimize the heap size. For example, if

xPortGetFreeHeapSize() returns 2000 after all the kernel objects have been created, then the

value of configTOTAL_HEAP_SIZE can be reduced by 2000.

xPortGetFreeHeapSize() is not available when heap_3 is used.

size_t xPortGetFreeHeapSize(void);

Listing 8. The xPortGetFreeHeapSize() API function prototype

Table 6. xPortGetFreeHeapSize() return value

Parameter Name/
Returned Value

Description

Returned value The number of bytes that remain unallocated in the heap at the time

xPortGetFreeHeapSize() is called.

The xPortGetMinimumEverFreeHeapSize() API Function

The xPortGetMinimumEverFreeHeapSize() API function returns the minimum number of

unallocated bytes that have ever existed in the heap since the FreeRTOS application started

executing.

The value returned by xPortGetMinimumEverFreeHeapSize() is an indication of how close the

application has ever come to running out of heap space. For example, if

xPortGetMinimumEverFreeHeapSize() returns 200, then, at some time since the application

started executing, it came within 200 bytes of running out of heap space.

xPortGetMinimumEverFreeHeapSize() is only available when heap_4 or heap_5 is used.

size_t xPortGetMinimumEverFreeHeapSize (void);

Listing 9. The xPortGetMinimumEverFreeHeapSize() API function prototype

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

42

Table 7. xPortGetMinimumEverFreeHeapSize() return value

Parameter Name/
Returned Value

Description

Returned value The minimum number of unallocated bytes that have existed in the

heap since the FreeRTOS application started executing.

Malloc Failed Hook Functions

pvPortMalloc() can be called directly from application code. It is also called within FreeRTOS

source files each time an kernel object is created. Examples of kernel objects include tasks,

queues, semaphores, and event groupsðall of which are described in later chapters of this

book.

Just like the standard library malloc() function, if pvPortMalloc() cannot return a block of RAM

because a block of the requested size does not exist, then it will return NULL. If

pvPortMalloc() is executed because the application writer is creating a kernel object, and the

call to pvPortMalloc() returns NULL, then the kernel object will not be created.

All the example heap allocation schemes can be configured to call a hook (or callback)

function if a call to pvPortMalloc() returns NULL.

If configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h, then the application

must provide a malloc failed hook function that has the name and prototype shown by Listing

10. The function can be implemented in any way that is appropriate for the application.

void vApplication MallocFailed Hook(void);

Listing 10. The malloc failed hook function name and prototype.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 43

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

44

Chapter 3

Task Management

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 45

3.1 Chapter Introduction and Scope

Scope

This chapter aims to give readers a good understanding of:

¶ How FreeRTOS allocates processing time to each task within an application.

¶ How FreeRTOS chooses which task should execute at any given time.

¶ How the relative priority of each task affects system behavior.

¶ The states that a task can exist in.

Readers should also gain a good understanding of:

¶ How to implement tasks.

¶ How to create one or more instances of a task.

¶ How to use the task parameter.

¶ How to change the priority of a task that has already been created.

¶ How to delete a task.

¶ How to implement periodic processing using a task (software timers are discussed in a

later chapter).

¶ When the idle task will execute and how it can be used.

The concepts presented in this chapter are fundamental to understanding how to use

FreeRTOS, and how FreeRTOS applications behave. This is, therefore, the most detailed

chapter in the book.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

46

3.2 Task Functions

Tasks are implemented as C functions. The only thing special about them is their prototype,

which must return void and take a void pointer parameter. The prototype is demonstrated by

Listing 11.

void ATaskFunction(void *pvParameters);

Listing 11. The task function prototype

Each task is a small program in its own right. It has an entry point, will normally run forever

within an infinite loop, and will not exit. The structure of a typical task is shown in Listing 12.

FreeRTOS tasks must not be allowed to return from their implementing function in any wayð

they must not contain a óreturnô statement and must not be allowed to execute past the end of

the function. If a task is no longer required, it should instead be explicitly deleted. This is also

demonstrated in Listing 12.

A single task function definition can be used to create any number of tasksðeach created task

being a separate execution instance, with its own stack and its own copy of any automatic

(stack) variables defined within the task itself.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 47

void ATaskFunction(void *pvParame ters)

{

/* Variables can be declared just as per a normal function. Each instance of a task

created using this exampl e function will have its own copy of the l VariableExample

variable. This would not be true if the variable was declared static ï in which case

only one copy of the variable would exist , and this copy would be shared by each

created instance of the task . (The prefixes added to variable names are described in

section 1.5, Data Types and Coding Style Guide .) */

int32_t l VariableExample = 0;

 /* A task will normally be implemented as an infinite loop. */

 for(;;)

 {

 /* The code to implement the task functionality will go here. */

 }

 /* Should the task implementation ever break out of the above loop , then the task

 must be deleted before reaching the end of its implementing function. The NULL

 par ameter passed to the vTaskDelete() API function indicates that the task to be

 deleted is the calling (this) task . The convention used to name API functions is

 described in section 0, Projects that use a FreeRTOS version older than V9.0.0

must build one of the heap_n.c file s. From Fr eeRTOS V9.0.0 a heap_n.c file is only

required if configSUPPOR T_DYNAMIC_ALLOCATION is set to 1 in FreeRTOSConfig.h or if

configSUPPORT_DYNAMIC_ALLOCATION is left undefined . Refer to Chapter 2 , Heap Memory

Management , for more information.

Data Types and Coding Style Guide . */

 vTaskDelete(NULL);

}

Listing 12. The structure of a typical task function

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

48

3.3 Top Level Task States

An application can consist of many tasks. If the processor running the application contains a

single core, then only one task can be executing at any given time. This implies that a task

can exist in one of two states, Running and Not Running. This simplistic model is considered

firstðbut keep in mind that it is an over simplification. Later in the chapter it is shown that the

Not Running state actually contains a number of sub-states.

When a task is in the Running state the processor is executing the taskôs code. When a task

is in the Not Running state, the task is dormant, its status having been saved ready for it to

resume execution the next time the scheduler decides it should enter the Running state.

When a task resumes execution, it does so from the instruction it was about to execute before

it last left the Running state.

Not RunningNot RunningNot Running Running

All tasks that are

not currently

Running are in the

Not Running state

Only one task

can be in the

Running state at

any one time

Figure 9. Top level task states and transitions

A task transitioned from the Not Running state to the Running state is said to have been

óswitched inô or óswapped inô. Conversely, a task transitioned from the Running state to the Not

Running state is said to have been óswitched outô or óswapped outô. The FreeRTOS scheduler

is the only entity that can switch a task in and out.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 49

3.4 Creating Tasks

The xTaskCreate() API Function

FreeRTOS V9.0.0 also includes the xTaskCreateStatic() function, which allocates the memory required to create a

task statically at compile time: Tasks are created using the FreeRTOS xTaskCreate() API function.

This is probably the most complex of all the API functions, so it is unfortunate that it is the first

encountered, but tasks must be mastered first as they are the most fundamental component of

a multitasking system. All the examples that accompany this book make use of the

xTaskCreate() function, so there are plenty of examples to reference.

Section 1.5, Data Types and Coding Style Guide, describes the data types and naming

conventions used.

BaseType_t xTaskCreate(TaskFunction_t pvTaskCode,

 const char * const pcName,

 uint16_t usStackDepth,

 void *pvParameters,

 UBaseType_t uxPriority,

 TaskHandle_t *pxCreatedTask);

Listing 13. The xTaskCreate() API function prototype

Table 8. xTaskCreate() parameters and return value

Parameter Name/
Returned Value

Description

pvTaskCode Tasks are simply C functions that never exit and, as such, are normally

implemented as an infinite loop. The pvTaskCode parameter is simply a

pointer to the function that implements the task (in effect, just the name

of the function).

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

50

Table 8. xTaskCreate() parameters and return value

Parameter Name/
Returned Value

Description

pcName A descriptive name for the task. This is not used by FreeRTOS in any

way. It is included purely as a debugging aid. Identifying a task by a

human readable name is much simpler than attempting to identify it by

its handle.

The application-defined constant configMAX_TASK_NAME_LEN

defines the maximum length a task name can takeðincluding the NULL

terminator. Supplying a string longer than this maximum will result in

the string being silently truncated.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 51

Table 8. xTaskCreate() parameters and return value

Parameter Name/
Returned Value

Description

usStackDepth Each task has its own unique stack that is allocated by the kernel to the

task when the task is created. The usStackDepth value tells the kernel

how large to make the stack.

The value specifies the number of words the stack can hold, not the

number of bytes. For example, if the stack is 32-bits wide and

usStackDepth is passed in as 100, then 400 bytes of stack space will be

allocated (100 * 4 bytes). The stack depth multiplied by the stack width

must not exceed the maximum value that can be contained in a variable

of type uint16_t.

The size of the stack used by the Idle task is defined by the application-

defined constant configMINIMAL_STACK_SIZE1. The value assigned

to this constant in the FreeRTOS demo application for the processor

architecture being used is the minimum recommended for any task. If

your task uses a lot of stack space, then you must assign a larger value.

There is no easy way to determine the stack space required by a task.

It is possible to calculate, but most users will simply assign what they

think is a reasonable value, then use the features provided by

FreeRTOS to ensure that the space allocated is indeed adequate, and

that RAM is not being wasted unnecessarily. Section 12.3, Stack

Overflow, contains information on how to query the maximum stack

space that has actually been used by a task.

pvParameters Task functions accept a parameter of type pointer to void (void*). The

value assigned to pvParameters is the value passed into the task.

Some examples in this book demonstrate how the parameter can be

used.

1 This is the only way the FreeRTOS source code uses the configMINIMAL_STACK_SIZE setting,
although the constant is also used inside demo applications to help make the demos portable across
multiple processor architectures.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

52

Table 8. xTaskCreate() parameters and return value

Parameter Name/
Returned Value

Description

uxPriority Defines the priority at which the task will execute. Priorities can be

assigned from 0, which is the lowest priority, to

(configMAX_PRIORITIES ï 1), which is the highest priority.

configMAX_PRIORITIES is a user defined constant that is described in

section 3.5.

Passing a uxPriority value above (configMAX_PRIORITIES ï 1) will

result in the priority assigned to the task being capped silently to the

maximum legitimate value.

pxCreatedTask pxCreatedTask can be used to pass out a handle to the task being

created. This handle can then be used to reference the task in API calls

that, for example, change the task priority or delete the task.

If your application has no use for the task handle, then pxCreatedTask

can be set to NULL.

Returned value There are two possible return values:

1. pdPASS

This indicates that the task has been created successfully.

2. pdFAIL

This indicates that the task has not been created because there is

insufficient heap memory available for FreeRTOS to allocate enough

RAM to hold the task data structures and stack.

Chapter 2 provides more information on heap memory

management.

Example 1. Creating tasks

This example demonstrates the steps needed to create two simple tasks, then start the tasks

executing. The tasks simply print out a string periodically, using a crude null loop to create the

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 53

period delay. Both tasks are created at the same priority, and are identical except for the

string they print outðsee Listing 14 and Listing 15 for their respective implementations.

void vTask1(void *pvParameters)

{

const char * pcTaskName = "Task 1 is running \ r \ n";

volatile uint32_t ul; /* volatile to ensure ul is not optimized away. */

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(pcTaskName);

 /* Delay for a period. */

 for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)

 {

 /* This loop is just a very crude delay implementation. There is

 nothing to do in here. Later examples will replace this crude

 loop with a proper delay/sleep function. */

 }

 }

}

Listing 14. Implementation of the first task used in Example 1

void vTask2(void *pvParameters)

{

const char *pcTaskName = "Task 2 is running \ r \ n";

volatile uint32_t ul; /* volatile to ensure ul is not optimized away. */

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(pcTaskName);

 /* Delay for a period. */

 for(ul = 0; ul < mainDELAY_LOOP_CO UNT; ul++)

 {

 /* This loop is just a very crude delay implementation. There is

 nothing to do in here. Later examples will replace this crude

 loop with a proper delay/sleep function. */

 }

 }

}

Listing 15. Implementation of the second task used in Example 1

The main() function creates the tasks before starting the schedulerðsee Listing 16 for its

implementation.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

54

int main(void)

{

 /* Create one of the two tasks. Note that a real application should check

 the return val ue of the xTaskCreate() call to ensure the task was created

 successfully. */

 xTaskCreate(vTask1, /* Pointer to the function that implements the task. */

 " Task 1", /* Text name for the task . This is to facilitate

 debugging only. */

 1000, /* Stack depth - small microcontrollers will use much

 less stack than this. */

 NULL, /* This example does not use the task para meter. */

 1, /* This task will run at priority 1 . */

 NULL); /* This example does not use the task handle. */

 /* Create the other task in exactly the same way and at the same priority . */

 xTaskCreate(vTask2, "Task 2", 1000, NULL, 1 , NULL);

 /* Start the scheduler so the tasks start executing. */

 vTaskStartScheduler();

 /* If all is well then main() will never reach here as the scheduler will

 now be running the tasks . If main() does reach here then it is likely that

 there was insufficient heap memory available for the idle task to be created.

 Chapter 2 pro vides more information on heap memory management. */

 for(;;);

}

Listing 16. Starting the Example 1 tasks

Executing the example produces the output shown in Figure 10.

Figure 10. The output produced when Example 1 is executed1

1 The screen shot shows each task printing out its message exactly once before the next task executes.
This is an artificial scenario that results from using the FreeRTOS Windows simulator. The Windows
simulator is not truly real time. Also writing to the Windows console takes a relatively long time and
results in a chain of Windows system calls. Executing the same code on a genuine embedded target
with a fast and non-blocking print function may result in each task printing its string many times before
being switched out to allow the other task to run.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 55

Figure 10 shows the two tasks appearing to execute simultaneously; however, as both tasks

are executing on the same processor core, this cannot be the case. In reality, both tasks are

rapidly entering and exiting the Running state. Both tasks are running at the same priority,

and so share time on the same processor core. Their actual execution pattern is shown in

Figure 11.

The arrow along the bottom of Figure 11 shows the passing of time from time t1 onwards. The

colored lines show which task is executing at each point in timeðfor example, Task 1 is

executing between time t1 and time t2.

Only one task can exist in the Running state at any one time. So, as one task enters the

Running state (the task is switched in), the other enters the Not Running state (the task is

switched out).

Time

Task 1

Task 2

t1 t2

At time t1, Task 1

enters the Running

state and executes

until time t2

t3

At time t2 Task 2 enters the Running

state and executes until time t3 - at

which point Task1 re-enters the

Running state

Figure 11. The actual execution pattern of the two Example 1 tasks

Example 1 created both tasks from within main(), prior to starting the scheduler. It is also

possible to create a task from within another task. For example, Task 2 could have been

created from within Task 1, as shown by Listing 17.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

56

void vTask1(void *pvPa rameters)

{

const char *pcTaskName = "Task 1 is running \ r \ n";

volatile uint32_t ul; /* volatile to ensure ul is not optimized away. */

 /* If this task code is executing then the scheduler must already have

 been started. Create the other task before enter ing the infinite loop. */

 xTaskCreate(vTask2, "Task 2", 1000, NULL, 1, NULL);

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(pcTaskName);

 /* Del ay for a period. */

 for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)

 {

 /* This loop is just a very crude delay implementation. There is

 nothing to do in here. Later examples will replace this crude

 loop with a proper delay/sleep function. */

 }

 }

}

Listing 17. Creating a task from within another task after the scheduler has started

Example 2. Using the task parameter

The two tasks created in Example 1 are almost identical, the only difference between them

being the text string they print out. This duplication can be removed by, instead, creating two

instances of a single task implementation. The task parameter can then be used to pass into

each task the string that it should print out.

Listing 18 contains the code of the single task function (vTaskFunction) used by Example 2.

This single function replaces the two task functions (vTask1 and vTask2) used in Example 1.

Note how the task parameter is cast to a char * to obtain the string the task should print out.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 57

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

volatile uint32_t ul; /* volatile to ensure ul is not optimized away. */

 /* The string to print out is passed in via the parameter. Cast this to a

 character pointe r. */

 pcTaskName = (char *) pvParameters;

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(pcTaskName);

 /* Delay for a perio d. */

 for(ul = 0; ul < mainDELAY_LOOP_COUNT; ul++)

 {

 /* This loop is just a very crude delay implementation. There is

 nothing to do in here. Later exercises will replace this crude

 loop with a proper delay/sleep function. */

 }

 }

}

Listing 18. The single task function used to create two tasks in Example 2

Even though there is now only one task implementation (vTaskFunction), more than one

instance of the defined task can be created. Each created instance will execute independently

under the control of the FreeRTOS scheduler.

Listing 19 shows how the pvParameters parameter to the xTaskCreate() function is used to

pass the text string into the task.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

58

/* Define the strings that will be passed in as the task parameters. These are

defined const and not on the stack to ensure they remain valid when the tasks are

executing. */

static const char *pcTextForTask1 = " Task 1 is running \ r \ n" ;

static const char *pcTextForTask2 = " Task 2 is running \ r \ n" ;

int main(void)

{

 /* Create one of the two tasks. */

 xTaskCreate(vTaskFunction, /* Pointer to the function that

 implements the task. * /

 "Task 1", /* Text name for the task. This is to

 facilitate debugging only. */

 1000, /* Stack depth - small microcontrollers

 will use much less stack than this. */

 (void*)pcTextForTask1 , /* Pass the text to be printed into the

 task using the task parameter . */

 1, /* This task will run at priority 1. */

 NULL); /* The task handle is not used in this

 example . */

 /* Create the other task in exactly the same way. Note this time that multiple

 tasks are being created from the SAME task implementation (vTaskFunction) . Only

 the value passed in the parameter is different. Two instances of the same

 task are being created. */

 xTaskCreate(vTaskFunction, "Task 2", 1000, (void*)pcTextForTask2 , 1, NULL);

 /* Start the scheduler so the tasks start executing. */

 vTaskStartScheduler();

 /* If all is well then main() will never reach here as the scheduler will

 now be running the tasks. If main() does reach here then it is likely that

 there was insufficient heap memory available for the idle task to be created.

 Chapter 2 provides more information on heap memory management. */

 for(;;);

}

Listing 19. The main() function for Example 2.

The output from Example 2 is exactly as per that shown for example 1 in Figure 10.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 59

3.5 Task Priorities

The uxPriority parameter of the xTaskCreate() API function assigns an initial priority to the task

being created. The priority can be changed after the scheduler has been started by using the

vTaskPrioritySet() API function.

The maximum number of priorities available is set by the application-defined

configMAX_PRIORITIES compile time configuration constant within FreeRTOSConfig.h. Low

numeric priority values denote low-priority tasks, with priority 0 being the lowest priority

possible. Therefore, the range of available priorities is 0 to (configMAX_PRIORITIES ï 1).

Any number of tasks can share the same priorityðensuring maximum design flexibility.

The FreeRTOS scheduler can use one of two methods to decide which task will be in the

Running state. The maximum value to which configMAX_PRIORITIES can be set depends on

the method used:

1. Generic Method

The generic method is implemented in C, and can be used with all the FreeRTOS

architecture ports.

When the generic method is used, FreeRTOS does not limit the maximum value to

which configMAX_PRIORITIES can be set. However, it is always advisable to keep

the configMAX_PRIORITIES value at the minimum necessary, because the higher its

value, the more RAM will be consumed, and the longer the worst case execution time

will be.

The generic method will be used if

configUSE_PORT_OPTIMISED_TASK_SELECTION is set to 0 in FreeRTOSConfig.h,

or if configUSE_PORT_OPTIMISED_TASK_SELECTION is left undefined, or if the

generic method is the only method provided for the FreeRTOS port in use.

2. Architecture Optimized Method

The architecture optimized method uses a small amount of assembler code, and is

faster than the generic method. The configMAX_PRIORITIES setting does not affect

the worst case execution time.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

60

If the architecture optimized method is used then configMAX_PRIORITIES cannot be

greater than 32. As with the generic method, it is advisable to keep

configMAX_PRIORITIES at the minimum necessary, as the higher its value, the more

RAM will be consumed.

The architecture optimized method will be used if

configUSE_PORT_OPTIMISED_TASK_SELECTION is set to 1 in FreeRTOSConfig.h.

Not all FreeRTOS ports provide an architecture optimized method.

The FreeRTOS scheduler will always ensure that the highest priority task that is able to run is

the task selected to enter the Running state. Where more than one task of the same priority is

able to run, the scheduler will transition each task into and out of the Running state, in turn.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 61

3.6 Time Measurement and the Tick Interrupt

Section 3.12, Scheduling Algorithms, describes an optional feature called ótime slicingô. Time

slicing was used in the examples presented so far, and is the behavior observed in the output

they produced. In the examples, both tasks were created at the same priority, and both tasks

were always able to run. Therefore, each task executed for a ótime sliceô, entering the Running

state at the start of a time slice, and exiting the Running state at the end of a time slice. In

Figure 11, the time between t1 and t2 equals a single time slice.

To be able to select the next task to run, the scheduler itself must execute at the end of each

time slice1. A periodic interrupt, called the ótick interruptô, is used for this purpose. The length

of the time slice is effectively set by the tick interrupt frequency, which is configured by the

application-defined configTICK_RATE_HZ compile time configuration constant within

FreeRTOSConfig.h. For example, if configTICK_RATE_HZ is set to 100 (Hz), then the time

slice will be 10 milliseconds. The time between two tick interrupts is called the ótick periodô.

One time slice equals one tick period.

Figure 11 can be expanded to show the execution of the scheduler itself in the sequence of

execution. This is shown in Figure 12, in which the top line shows when the scheduler is

executing, and the thin arrows show the sequence of execution from a task to the tick

interrupt, then from the tick interrupt back to a different task.

The optimal value for configTICK_RATE_HZ is dependent on the application being developed,

although a value of 100 is typical.

1 It is important to note that the end of a time slice is not the only place that the scheduler can select a
new task to run; as will be demonstrated throughout this book, the scheduler will also select a new task
to run immediately after the currently executing task enters the Blocked state, or when an interrupt
moves a higher priority task into the Ready state.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

62

Task 1

Task 2

t1 t2 t3

Kernel

Tick

interrupt

occurs

Kernel runs in tick

interrupt to select

next task

Newly selected task runs when

the tick interrupt completes

Figure 12. The execution sequence expanded to show the tick interrupt executing

FreeRTOS API calls always specify time in multiples of tick periods, which are often referred to

simply as óticksô. The pdMS_TO_TICKS() macro converts a time specified in milliseconds into

a time specified in ticks. The resolution available depends on the defined tick frequency, and

pdMS_TO_TICKS() cannot be used if the tick frequency is above 1KHz (if

configTICK_RATE_HZ is greater than 1000). Listing 20 shows how to use pdMS_TO_TICKS()

to convert a time specified as 200 milliseconds into an equivalent time specified in ticks.

/* pdMS_TO_TICKS() takes a time in milliseconds as its only parameter, and evaluates

to the equivalent time in tick periods . This example shows xTimeInTicks being set to

the number of tick periods that are equivalent to 200 milliseconds. */

TickType_t xTimeIn Ticks = pdMS_TO_TICKS(200);

Listing 20. Using the pdMS_TO_TICKS() macro to convert 200 milliseconds into an
equivalent time in tick periods

Note: It is not recommended to specify times in ticks directly within the application, but instead

to use the pdMS_TO_TICKS() macro to specify times in milliseconds, and in so doing,

ensuring times specified within the application do not change if the tick frequency is changed.

The ótick countô value is the total number of tick interrupts that have occurred since the

scheduler was started, assuming the tick count has not overflowed. User applications do not

have to consider overflows when specifying delay periods, as time consistency is managed

internally by FreeRTOS.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 63

Section 3.12, Scheduling Algorithms, describes configuration constants that affect when the

scheduler will select a new task to run, and when a tick interrupt will execute.

Example 3. Experimenting with priorities

The scheduler will always ensure that the highest priority task that is able to run is the task

selected to enter the Running state. In our examples so far, two tasks have been created at

the same priority, so both entered and exited the Running state in turn. This example looks at

what happens when the priority of one of the two tasks created in Example 2 is changed. This

time, the first task will be created at priority 1, and the second at priority 2. The code to create

the tasks is shown in Listing 21. The single function that implements both tasks has not

changed; it still simply prints out a string periodically, using a null loop to create a delay.

/* Define the strings that will be passed in as the task parameters. These are

defined const and not on the stack to ensure they remain valid when the tasks are

executing. */

static const char *pcTextForTask1 = " Task 1 is running \ r \ n" ;

static const char *pcTextForTask2 = " Task 2 is running \ r \ n" ;

int main(void)

{

 /* Create the first task at priority 1 . The priority is the second to last

 parameter . */

 xTaskCreate(vTask Function, "Task 1", 1000, (void*)pcTextForTask1 , 1, NULL);

 /* Create the second task at priority 2 , which is higher than a priority of 1 .

 The priority is the second to last parameter. */

 xTaskCreate(vTaskFunction, "Task 2", 1000, (void*)pcTe xtForTask2 , 2, NULL);

 /* Start the scheduler so the tasks start executing. */

 vTaskStartScheduler();

 /* Will not reach here. */

 return 0;

}

Listing 21. Creating two tasks at different priorities

The output produced by Example 3 is shown in Figure 13.

The scheduler will always select the highest priority task that is able to run. Task 2 has a

higher priority than Task 1 and is always able to run; therefore, Task 2 is the only task to ever

enter the Running state. As Task 1 never enters the Running state, it never prints out its

string. Task 1 is said to be óstarvedô of processing time by Task 2.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

64

Figure 13. Running both tasks at different priorities

Task 2 is always able to run because it never has to wait for anythingðit is either cycling

around a null loop, or printing to the terminal.

Figure 14 shows the execution sequence for Example 3.

Task 1

Task 2

t1 t2 t3

Kernel

Tick

interrupt

occurs

The scheduler runs in the tick interrupt

but selects the same task. Task 2 is

always in the Running state and Task 1 is

always in the Not Running state

Figure 14. The execution pattern when one task has a higher priority than the other

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 65

3.7 Expanding the óNot Running ô State

So far, the created tasks have always had processing to perform and have never had to wait

for anythingðas they never have to wait for anything, they are always able to enter the

Running state. This type of ócontinuous processingô task has limited usefulness, because they

can only be created at the very lowest priority. If they run at any other priority, they will prevent

tasks of lower priority ever running at all.

To make the tasks useful they must be re-written to be event-driven. An event-driven task has

work (processing) to perform only after the occurrence of the event that triggers it, and is not

able to enter the Running state before that event has occurred. The scheduler always selects

the highest priority task that is able to run. High priority tasks not being able to run means that

the scheduler cannot select them and must, instead, select a lower priority task that is able to

run. Therefore, using event-driven tasks means that tasks can be created at different priorities

without the highest priority tasks starving all the lower priority tasks of processing time.

The Blocked State

A task that is waiting for an event is said to be in the óBlockedô state, which is a sub-state of the

Not Running state.

Tasks can enter the Blocked state to wait for two different types of event:

1. Temporal (time-related) eventsðthe event being either a delay period expiring, or an

absolute time being reached. For example, a task may enter the Blocked state to wait

for 10 milliseconds to pass.

2. Synchronization eventsðwhere the events originate from another task or interrupt. For

example, a task may enter the Blocked state to wait for data to arrive on a queue.

Synchronization events cover a broad range of event types.

FreeRTOS queues, binary semaphores, counting semaphores, mutexes, recursive mutexes,

event groups and direct to task notifications can all be used to create synchronization events.

All these features are covered in future chapters of this book.

It is possible for a task to block on a synchronization event with a timeout, effectively blocking

on both types of event simultaneously. For example, a task may choose to wait for a

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

66

maximum of 10 milliseconds for data to arrive on a queue. The task will leave the Blocked

state if either data arrives within 10 milliseconds, or 10 milliseconds pass with no data arriving.

The Suspended State

óSuspendedô is also a sub-state of Not Running. Tasks in the Suspended state are not

available to the scheduler. The only way into the Suspended state is through a call to the

vTaskSuspend() API function, the only way out being through a call to the vTaskResume() or

xTaskResumeFromISR() API functions. Most applications do not use the Suspended state.

The Ready State

Tasks that are in the Not Running state but are not Blocked or Suspended are said to be in the

Ready state. They are able to run, and therefore óreadyô to run, but are not currently in the

Running state.

Completing the State Transition Diagram

Figure 15 expands on the previous over-simplified state diagram to include all the Not Running

sub-states described in this section. The tasks created in the examples so far have not used

the Blocked or Suspended states; they have only transitioned between the Ready state and

the Running stateðhighlighted by the bold lines in Figure 15.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 67

Not Running

(super state)

Ready

Blocked

Suspended

Running

Event Blocking API

function called
vTaskSuspend()

called

vTaskSuspend()

called
vTaskResume()

called

vTaskSuspend()

called

Figure 15. Full task state machine

Example 4. Using the Blocked state to create a delay

All the tasks created in the examples presented so far have been óperiodicôðthey have

delayed for a period and printed out their string, before delaying once more, and so on. The

delay has been generated very crudely using a null loopðthe task effectively polled an

incrementing loop counter until it reached a fixed value. Example 3 clearly demonstrated the

disadvantage of this method. The higher priority task remained in the Running state while it

executed the null loop, óstarvingô the lower priority task of any processing time.

There are several other disadvantages to any form of polling, not least of which is its

inefficiency. During polling, the task does not really have any work to do, but it still uses

maximum processing time, and so wastes processor cycles. Example 4 corrects this behavior

by replacing the polling null loop with a call to the vTaskDelay() API function, the prototype for

which is shown in Listing 22. The new task definition is shown in Listing 23. Note that the

vTaskDelay() API function is available only when INCLUDE_vTaskDelay is set to 1 in

FreeRTOSConfig.h.

vTaskDelay() places the calling task into the Blocked state for a fixed number of tick interrupts.

The task does not use any processing time while it is in the Blocked state, so the task only

uses processing time when there is actually work to be done.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

68

void vTaskDelay(TickType_t xTicksToDelay);

Listing 22. The vTaskDelay() API function prototype

Table 9. vTaskDelay() parameters

Parameter
Name

Description

xTicksToDelay The number of tick interrupts that the calling task will remain in the Blocked

state before being transitioned back into the Ready state.

For example, if a task called vTaskDelay(100) when the tick count was

10,000, then it would immediately enter the Blocked state, and remain in

the Blocked state until the tick count reached 10,100.

The macro pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds into a time specified in ticks. For example, calling

vTaskDelay(pdMS_TO_TICKS(100)) will result in the calling task

remaining in the Blocked state for 100 milliseconds.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 69

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

const TickType_t xDelay250ms = pdMS_TO_TICKS(250);

 /* The string to print out is passed in via the parameter. Cast this to a

 character pointer. */

 pcTaskName = (char *) pvParameters;

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(pcTaskName);

 /* Delay for a period. This time a call to vTaskDelay() is used which places

 the task into the Blocked state until the delay period has expired. The

 para meter takes a time specified in óticks ô, and the pdMS_TO_TICKS() macro

 is used (where the xDelay250ms constant is declared) to convert 250

 milliseconds into an equivalent time in ticks. */

 vTaskDelay(xDelay250ms);

 }

}

Listing 23. The source code for the example task after the null loop delay has been
replaced by a call to vTaskDelay()

Even though the two tasks are still being created at different priorities, both will now run. The

output of Example 4, which is shown in Figure 16, confirms the expected behavior.

Figure 16. The output produced when Example 4 is executed

The execution sequence shown in Figure 17 explains why both tasks run, even though they

are created at different priorities. The execution of the scheduler itself is omitted for simplicity.

The idle task is created automatically when the scheduler is started, to ensure there is always

at least one task that is able to run (at least one task in the Ready state). Section 3.8, The Idle

Task and the Idle Task Hook, describes the Idle task in more detail.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

70

Time

Task 1

Task 2

t1 t2 t3

Idle

tn

1 - Task 2 has the highest priority so runs first. It

prints out its string then calls vTaskDelay() - and in so

doing enters the Blocked state, permitting the lower

priority Task 1 to execute.

2 - Task 1 prints out its string, then it too

enters the Blocked state by calling

vTaskDelay().

3 - At this point both application tasks are in

the Blocked state - so the Idle task runs.

4 - When the delay expires the scheduler moves the

tasks back into the ready state, where both execute

again before once again calling vTaskDelay() causing

them to re-enter the Blocked state. Task 2 executes

first as it has the higher priority.

Figure 17. The execution sequence when the tasks use vTaskDelay() in place of the
NULL loop

Only the implementation of the two tasks has changed, not their functionality. Comparing

Figure 17 with Figure 12 demonstrates clearly that this functionality is being achieved in a

much more efficient manner.

Figure 12 shows the execution pattern when the tasks use a null loop to create a delayðso

are always able to run, and as a result use one hundred percent of the available processor

time between them. Figure 17 shows the execution pattern when the tasks enter the Blocked

state for the entirety of their delay period, so use processor time only when they actually have

work that needs to be performed (in this case simply a message to be printed out), and as a

result only use a tiny fraction of the available processing time.

In the Figure 17 scenario, each time the tasks leave the Blocked state they execute for a

fraction of a tick period before re-entering the Blocked state. Most of the time there are no

application tasks that are able to run (no application tasks in the Ready state) and, therefore,

no application tasks that can be selected to enter the Running state. While this is the case,

the idle task will run. The amount of processing time allocated to the idle is a measure of the

spare processing capacity in the system. Using an RTOS can significantly increase the spare

processing capacity simply by allowing an application to be completely event driven.

The bold lines in Figure 18 show the transitions performed by the tasks in Example 4, with

each now transitioning through the Blocked state before being returned to the Ready state.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 71

Not Running

(super state)

Ready

Blocked

Suspended

Running

Event Blocking API

function called
vTaskSuspend()

called

vTaskSuspend()

called
vTaskResume()

called

vTaskSuspend()

called

Figure 18. Bold lines indicate the state transitions performed
 by the tasks in Example 4

The vTaskDelayUntil() API Function

vTaskDelayUntil() is similar to vTaskDelay(). As just demonstrated, the vTaskDelay()

parameter specifies the number of tick interrupts that should occur between a task calling

vTaskDelay(), and the same task once again transitioning out of the Blocked state. The length

of time the task remains in the blocked state is specified by the vTaskDelay() parameter, but

the time at which the task leaves the blocked state is relative to the time at which vTaskDelay()

was called.

The parameters to vTaskDelayUntil() specify, instead, the exact tick count value at which the

calling task should be moved from the Blocked state into the Ready state. vTaskDelayUntil()

is the API function that should be used when a fixed execution period is required (where you

want your task to execute periodically with a fixed frequency), as the time at which the calling

task is unblocked is absolute, rather than relative to when the function was called (as is the

case with vTaskDelay()).

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

72

void vTaskD elayUntil(TickType_t * pxPreviousWakeT ime, TickType_t xTimeIncrement) ;

Listing 24. vTaskDelayUntil() API function prototype

Table 10. vTaskDelayUntil() parameters

Parameter Name Description

pxPreviousWakeTime This parameter is named on the assumption that vTaskDelayUntil()

is being used to implement a task that executes periodically and

with a fixed frequency. In this case, pxPreviousWakeTime holds

the time at which the task last left the Blocked state (was ówokenô

up). This time is used as a reference point to calculate the time at

which the task should next leave the Blocked state.

The variable pointed to by pxPreviousWakeTime is updated

automatically within the vTaskDelayUntil() function; it would not

normally be modified by the application code, but must be initialized

to the current tick count before it is used for the first time. Listing 25

demonstrates how the initialization is performed.

xTimeIncrement This parameter is also named on the assumption that

vTaskDelayUntil() is being used to implement a task that executes

periodically and with a fixed frequencyðthe frequency being set by

the xTimeIncrement value.

xTimeIncrement is specified in óticksô. The macro

pdMS_TO_TICKS() can be used to convert a time specified in

milliseconds into a time specified in ticks.

Example 5. Converting the example tasks to use vTaskDelayUntil()

The two tasks created in Example 4 are periodic tasks, but using vTaskDelay() does not

guarantee that the frequency at which they run is fixed, as the time at which the tasks leave

the Blocked state is relative to when they call vTaskDelay(). Converting the tasks to use

vTaskDelayUntil() instead of vTaskDelay() solves this potential problem.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 73

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

TickType_t xLastWakeTime;

 /* The string to print out is passed in via the parameter. Cast this to a

 character pointer. */

 pcTaskName = (char *) pvParameters;

 /* The xLastWakeTime variable needs to be initialized with the current tick

 count. Note that this i s the only time the variable is written to explicitly.

 After this xLastWakeTime is automatically updated within vTaskDelayUntil(). */

 xLastWakeTime = xTaskGetTickCount() ;

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(pcTaskName);

 /* This task should execute every 250 milliseconds exactly . As per

 the vTaskDelay() function, time is measured in ticks, and the

 pdMS_TO_TICKS() macro is used to convert milliseconds into ticks.

 xLastWakeTime is automatically updated within vTaskDelayUntil() , so is not

 explicitly updated by the task. */

 vTaskDelay Until (&xLastWakeTime, pdMS_TO_TICKS(250));

 }

}

Listing 25. The implementation of the example task using vTaskDelayUntil()

The output produced by Example 5 is exactly as per that shown for Example 4 in Figure 16.

Example 6. Combining blocking and non-blocking tasks

Previous examples have examined the behavior of both polling and blocking tasks in isolation.

This example re-enforces the stated expected system behavior by demonstrating an execution

sequence when the two schemes are combined, as follows.

1. Two tasks are created at priority 1. These do nothing other than continuously print out

a string.

These tasks never make any API function calls that could cause them to enter the

Blocked state, so are always in either the Ready or the Running state. Tasks of this

nature are called ócontinuous processingô tasks, as they always have work to do (albeit

rather trivial work, in this case). The source for the continuous processing tasks is

shown in Listing 26.

2. A third task is then created at priority 2, so above the priority of the other two tasks.

The third task also just prints out a string, but this time periodically, so uses the

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

74

vTaskDelayUntil() API function to place itself into the Blocked state between each print

iteration.

The source for the periodic task is shown in Listing 27.

void vContinuousProcess ingTask(void *pvParameters)

{

char *pcTaskName;

 /* The string to print out is passed in via the parameter. Cast this to a

 character pointer. */

 pcTaskName = (char *) pvParameters;

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. This task just does this repeatedly

 without ever blocking or delaying. */

 vPrintString(pcTaskName);

 }

}

Listing 26. The continuous processing task used in Example 6

void vPeriodicTask(void *pvParameters)

{

TickType_t xLastWakeTime;

const TickType_t xDelay 3ms = pdMS_TO_TICKS(3);

 /* The xLastWakeTime variable needs to be initialized with the current tick

 count. Note that this is the only time the variable is explicitly written to.

 After this xLastWakeTime is managed automatically by the vTaskDelayUntil()

 API function. */

 xLastWakeTime = xTaskGetTickCount();

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString("Periodic t ask is running \ r \ n");

 /* The task should execute every 3 milliseconds exactly ï see the

 declaration of xDelay 3ms in this function . */

 vTaskDelayUntil(&xLastWakeTime, xDelay 3ms);

 }

}

Listing 27. The periodic task used in Example 6

Figure 19 shows the output produced by Example 6, with an explanation of the observed

behavior given by the execution sequence shown in Figure 20.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 75

Figure 19. The output produced when Example 6 is executed

Time

Continuous 2

Idle

t1 t2

1 - Continuous task 1 runs for a

complete tick period (time slice

between times t1 and t2) - during

which time it could print out its

string many times.

t3

2 - The tick interrupt occurs during which the

scheduler selects a new task to run. As both

Continuous tasks have the same priority and

both are always able to run the scheduler

shares processing time between the two - so

Continuous 2 enters the Running state where it

remains for the entire tick period - during which

time it could print out its string many times.

Continuous 1

Periodic

3 - At time t3 the tick interrupt

runs again, causing a switch back

to Continuous 1, and so it goes

on.

t5

4 - At time t5 the tick interrupt finds that the Periodic task block

period has expired so moved the Periodic task into the Ready

state. The Periodic task is the highest priority task so

immediately then enters the Running state where it prints out its

string exactly once before calling vTaskDelayUntil() to return to

the Blocked state.

The Idle task never enters the

Running state as there are

always higher priority task that

are able to do so.

5 - The Periodic task entering the

Blocked state means the scheduler has

again to choose a task to enter the

Running state - in this case Continuous

1 is chosen and it runs up to the next tick

interrupt - during which time it could print

out its string many times.

Figure 20. The execution pattern of Example 6

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

76

3.8 The Idle Task and the Idle Task Hook

The tasks created in Example 4 spend most of their time in the Blocked state. While in this

state, they are not able to run, so cannot be selected by the scheduler.

There must always be at least one task that can enter the Running state1. To ensure this is

the case, an Idle task is automatically created by the scheduler when vTaskStartScheduler() is

called. The idle task does very little more than sit in a loopðso, like the tasks in the original

first examples, it is always able to run.

The idle task has the lowest possible priority (priority zero), to ensure it never prevents a

higher priority application task from entering the Running stateðalthough there is nothing to

prevent application designers creating tasks at, and therefore sharing, the idle task priority, if

desired. The configIDLE_SHOULD_YIELD compile time configuration constant in

FreeRTOSConfig.h can be used to prevent the Idle task from consuming processing time that

would be more productively allocated to applications tasks. configIDLE_SHOULD_YIELD is

described in section 3.12, Scheduling Algorithms.

Running at the lowest priority ensures the Idle task is transitioned out of the Running state as

soon as a higher priority task enters the Ready state. This can be seen at time tn in Figure 17,

where the Idle task is immediately swapped out to allow Task 2 to execute at the instant Task

2 leaves the Blocked state. Task 2 is said to have pre-empted the idle task. Pre-emption

occurs automatically, and without the knowledge of the task being pre-empted.

Note: If an application uses the vTaskDelete() API function then it is essential that the Idle task

is not starved of processing time. This is because the Idle task is responsible for cleaning up

kernel resources after a task has been deleted.

Idle Task Hook Functions

It is possible to add application specific functionality directly into the idle task through the use

of an idle hook (or idle callback) functionða function that is called automatically by the idle

task once per iteration of the idle task loop.

1 This is the case even when the special low power features of FreeRTOS are being used, in which
case the microcontroller on which FreeRTOS is executing will be placed into a low power mode if none
of the tasks created by the application are able to execute.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 77

Common uses for the Idle task hook include:

¶ Executing low priority, background, or continuous processing functionality.

¶ Measuring the amount of spare processing capacity. (The idle task will run only when

all higher priority application tasks have no work to perform; so measuring the amount

of processing time allocated to the idle task provides a clear indication of how much

processing time is spare.)

¶ Placing the processor into a low power mode, providing an easy and automatic method

of saving power whenever there is no application processing to be performed (although

the power saving that can be achieved using this method is less than can be achieved

by using the tick-less idle mode described in Chapter 10, Low Power Support).

Limitations on the Implementation of Idle Task Hook Functions

Idle task hook functions must adhere to the following rules.

1. An Idle task hook function must never attempt to block or suspend.

Note: Blocking the idle task in any way could cause a scenario where no tasks are

available to enter the Running state.

2. If the application makes use of the vTaskDelete() API function, then the Idle task hook

must always return to its caller within a reasonable time period. This is because the

Idle task is responsible for cleaning up kernel resources after a task has been deleted.

If the idle task remains permanently in the Idle hook function, then this clean-up cannot

occur.

Idle task hook functions must have the name and prototype shown by Listing 28.

void vApplicationIdleHook(void);

Listing 28. The idle task hook function name and prototype

Example 7. Defining an idle task hook function

The use of blocking vTaskDelay() API calls in Example 4 created a lot of idle timeðtime when

the Idle task is executing because both application tasks are in the Blocked state. Example 7

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

78

makes use of this idle time through the addition of an Idle hook function, the source for which

is shown in Listing 29.

/* Declare a variable that will be incremented by the hook function. */

volatile uint32_t ulIdleCycleCount = 0UL;

/* Idle hook functions MUST be called vApplicationIdleHook(), take n o parameters,

and return void. */

void vApplicationIdleHook(void)

{

 /* This hook function does nothing but increment a counter. */

 ulIdleCycleCount++;

}

Listing 29. A very simple Idle hook function

configUSE_IDLE_HOOK must be set to 1 in FreeRTOSConfig.h for the idle hook function to

get called.

The function that implements the created tasks is modified slightly to print out the

ulIdleCycleCount value, as shown in Listing 30.

void vTaskFunction(void *pvParameters)

{

char *pcTaskName;

const TickType_t xDelay250ms = pdMS_TO_TICKS(250);

 /* The string to print out is passed in via the paramete r. Cast this to a

 character pointer. */

 pcTaskName = (char *) pvParameters;

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;)

 {

 /* Print out the name of this task AND the number of times ulIdleCycleCount

 has been incremented. */

 vPrintString AndNumber(pcTaskName , ulIdleCycleCount);

 /* Delay for a period of 250 milliseconds . */

 vTaskDelay(xDelay2 50ms);

 }

}

Listing 30. The source code for the example task now prints out the
ulIdleCycleCount value

The output produced by Example 7 is shown in Figure 21. It shows the idle task hook function

is called approximately 4 million times between each iteration of the application tasks (the

number of iterations is dependent on the speed of the hardware on which the demo is

executed).

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 79

Figure 21. The output produced when Example 7 is executed

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

80

3.9 Changing the Priority of a Task

The vTaskPrioritySet() API Function

The vTaskPrioritySet() API function can be used to change the priority of any task after the

scheduler has been started. Note that the vTaskPrioritySet() API function is available only

when INCLUDE_vTaskPrioritySet is set to 1 in FreeRTOSConfig.h.

void vTaskPrioritySet(TaskHandle_t pxTask, UBaseType_t uxNewPriority) ;

Listing 31. The vTaskPrioritySet() API function prototype

Table 11. vTaskPrioritySet() parameters

Parameter Name Description

pxTask The handle of the task whose priority is being modified (the subject

task)ðsee the pxCreatedTask parameter of the xTaskCreate() API

function for information on obtaining handles to tasks.

A task can change its own priority by passing NULL in place of a valid

task handle.

uxNewPriority The priority to which the subject task is to be set. This is capped

automatically to the maximum available priority of

(configMAX_PRIORITIES ï 1), where configMAX_PRIORITIES is a

compile time constant set in the FreeRTOSConfig.h header file.

The uxTaskPriorityGet() API Function

The uxTaskPriorityGet() API function can be used to query the priority of a task. Note that the

uxTaskPriorityGet() API function is available only when INCLUDE_uxTaskPriorityGet is set to

1 in FreeRTOSConfig.h.

UBaseType_t uxTaskP riorityGet (TaskHandle_t pxTask);

Listing 32. The uxTaskPriorityGet() API function prototype

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 81

Table 12. uxTaskPriorityGet() parameters and return value

Parameter Name/
Return Value

Description

pxTask The handle of the task whose priority is being queried (the subject

task)ðsee the pxCreatedTask parameter of the xTaskCreate() API

function for information on obtaining handles to tasks.

A task can query its own priority by passing NULL in place of a valid

task handle.

Returned value The priority currently assigned to the task being queried.

Example 8. Changing task priorities

The scheduler will always select the highest Ready state task as the task to enter the Running

state. Example 8 demonstrates this by using the vTaskPrioritySet() API function to change the

priority of two tasks relative to each other.

Example 8 creates two tasks at two different priorities. Neither task makes any API function

calls that could cause it to enter the Blocked state, so both are always in either the Ready

state or the Running state. Therefore, the task with the highest relative priority will always be

the task selected by the scheduler to be in the Running state.

Example 8 behaves as follows:

1. Task 1 (Listing 33) is created with the highest priority, so is guaranteed to run first.

Task 1 prints out a couple of strings before raising the priority of Task 2 (Listing 34) to

above its own priority.

2. Task 2 starts to run (enters the Running state) as soon as it has the highest relative

priority. Only one task can be in the Running state at any one time, so when Task 2 is

in the Running state, Task 1 is in the Ready state.

3. Task 2 prints out a message before setting its own priority back down to below that of

Task 1.

4. Task 2 setting its priority back down means Task 1 is once again the highest priority

task, so Task 1 re-enters the Running state, forcing Task 2 back into the Ready state.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

82

void vTask1(void *pvP arameters)

{

UBaseType_t uxPriority;

 /* This task will always run before Task 2 as it is created with the higher

 priority. Neither Task 1 nor Task 2 ever block so both will always be in

 either the Running or the Ready state.

 Query the priority at which this task is running - passing in NULL means

 "return the calling task ôs priority". */

 uxPriority = uxTaskPriorityGet(NULL);

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(" Task 1 is ru nning \ r \ n");

 /* Setting the Task 2 priority above the Task 1 priority will cause

 Task 2 to immediately start running (as then Task 2 will have the higher

 priority of the two created tasks). Note the use of the handle to task

 2 (xTask2Handle) in the call to vTaskPrioritySet(). Listing 35 shows how

 the handle was obtained. */

 vPrintString("About to r aise the Task 2 priority \ r \ n");

 vTaskPrioritySet(xTask2Handle, (uxPriority + 1));

 /* Task 1 will only run when it has a priority higher than Task 2 .

 Therefore, for this task to reach this point , Task 2 must already have

 executed and set its priority back down to below the priority of this

 task . */

 }

}

Listing 33. The implementation of Task 1 in Example 8

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 83

void vTask2(void *pvParameters)

{

UBaseType_t uxPriority;

 /* Task 1 will always run before this task as Task 1 is created with the

 higher priority. Neither Task 1 nor Task 2 ev er block so will always be

 in either the Running or the Ready state.

 Query the priority at which this task is running - passing in NULL means

 "return the calling task ôs priority". */

 uxPriority = uxTaskPriorityGet(NULL);

 for(;;)

 {

 /* For this task to reach this point Task 1 must have already run and

 set the priority of this task higher than its own.

 Print out the name of this task. */

 vPrintString(" Task 2 is running \ r \ n");

 /* Set the priority of this task back down to its original value.

 Passing in NULL as the task handle means " change the priority of the

 calling task ". Setting the priority below that of Task 1 will cause

 Task 1 to immediately start running again ï pre - empting this task . */

 vPrintString("About to lower the Task 2 priority \ r \ n");

 vTaskPrioritySet(NULL, (uxPriority - 2));

 }

}

Listing 34. The implementation of Task 2 in Example 8

Each task can both query and set its own priority without the use of a valid task handle, by

simply using NULL, instead. A task handle is required only when a task wishes to reference a

task other than itself, such as when Task 1 changes the priority of Task 2. To allow Task 1 to

do this, the Task 2 handle is obtained and saved when Task 2 is created, as highlighted in the

comments in Listing 35.

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

84

/* Declare a variable that is u sed to hold the handle of Task 2 . */

TaskHandle_t xTask2Handle = NULL ;

int main(void)

{

 /* Create the first task at priority 2. The task parameter is not used

 and set to NULL. The task handle is also not used so is also set to NULL. */

 xTaskCreate(vTask1, "Task 1", 1000, NULL, 2, NULL);

 /* The task is created at priority 2 ______ ^. */

 /* Create the second task at priority 1 - which is lower than the priority

 given to Task 1 . Again the task parameter is not used so is set to NULL -

 BUT this time the task handle is required so the address of xTask2Handle

 is passed in the last parameter. */

 xTaskCreate(vTask2, "Task 2", 1000, NULL, 1, &xTask2Handle);

 /* The task handle is the last parameter _____ ^^^^^^^^^^^^^ */

 /* Start the scheduler so the tasks start executing. */

 vTaskStartScheduler();

 /* If all is well then main() will never reach here as the scheduler will

 now be running the tasks. If main() does reach here then it is likely there

 was insufficient heap memory available for the idle task to be created.

 Chapter 2 provides more information on heap memory management. */

 for(;;);

}

Listing 35. The implementation of main() for Example 8

Figure 22 demonstrates the sequence in which the Example 8 tasks execute, with the

resultant output shown in Figure 23.

Time

Task 1

Task 2

t1 t2

Idle

1 - Task1 runs

first as it has the

highest priority

2 - Task2 runs each

time Task1 sets the

Task2 priority to be

the highest

3 - Task1 runs again when

Task2 lowers its own priority

back to being below the

Task1 priority, and so on

The Idle task never runs

as both application tasks

are always able to run and

always have a priority

above the idle priority

Figure 22. The sequence of task execution when running Example 8

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 85

Figure 23. The output produced when Example 8 is executed

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

86

3.10 Deleting a Task

The vTaskDelete() API Function

A task can use the vTaskDelete() API function to delete itself, or any other task. Note that the

vTaskDelete() API function is available only when INCLUDE_vTaskDelete is set to 1 in

FreeRTOSConfig.h.

Deleted tasks no longer exist and cannot enter the Running state again.

It is the responsibility of the idle task to free memory allocated to tasks that have since been

deleted. Therefore, it is important that applications using the vTaskDelete() API function do

not completely starve the idle task of all processing time.

Note: Only memory allocated to a task by the kernel itself will be freed automatically when the

task is deleted. Any memory or other resource that the implementation of the task allocated

must be freed explicitly.

void vTaskDelete(TaskHandle_t pxTask ToDelete) ;

Listing 36. The vTaskDelete() API function prototype

Table 13. vTaskDelete() parameters

Parameter Name/
Return Value

Description

pxTaskToDelete The handle of the task that is to be deleted (the subject task)ðsee the

pxCreatedTask parameter of the xTaskCreate() API function for

information on obtaining handles to tasks.

A task can delete itself by passing NULL in place of a valid task handle.

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

 87

Example 9. Deleting tasks

This is a very simple example that behaves as follows.

1. Task 1 is created by main() with priority 1. When it runs, it creates Task 2 at priority 2.

Task 2 is now the highest priority task, so it starts to execute immediately. The source

for main() is shown in Listing 37, and the source for Task 1 is shown in Listing 38.

2. Task 2 does nothing other than delete itself. It could delete itself by passing NULL to

vTaskDelete() but instead, for demonstration purposes, it uses its own task handle.

The source for Task 2 is shown in Listing 39.

3. When Task 2 has been deleted, Task 1 is again the highest priority task, so continues

executingðat which point it calls vTaskDelay() to block for a short period.

4. The Idle task executes while Task 1 is in the blocked state and frees the memory that

was allocated to the now deleted Task 2.

5. When Task 1 leaves the blocked state it again becomes the highest priority Ready

state task and so pre-empts the Idle task. When it enters the Running state it creates

Task 2 again, and so it goes on.

int main(void)

{

 /* Create the first task at priority 1. The task parameter is not used

 so is set to NULL. The task handle is also not used so likewise is set

 to NULL. */

 xTaskCreate(vTask1, "Task 1", 1000, NULL, 1, NULL);

 /* The task is created at priority 1 ______ ^. */

 /* Start the scheduler so the task start s executing. */

 vTaskStartScheduler();

 /* main() should never reach here as the sch eduler has been started. */

 for(;;);

}

Listing 37. The implementation of main() for Example 9

161204 Pre-release for FreeRTOS V8.x.x. See http://www.FreeRTOS.org/FreeRTOS-V9.html for information about FreeRTOS
V9.x.x. See https://www.freertos.org/FreeRTOS-V10.html for information about FreeRTOS V10.x.x.

88

TaskHandle_t xTask2Handle = NULL ;

void vTask1(void *pvParameters)

{

const TickType_t xDelay100ms = pdMS_TO_TICKS(100UL) ;

 for(;;)

 {

 /* Print out the name of this task. */

 vPrintString(" Task 1 is running \ r \ n");

 /* Create task 2 at a higher priority. Again the task parameter is not

 used so is set to NULL - BUT this time the task handle is required so

 the address of xTask2Handle is passed as the last parameter. */

 xTaskCreate(vTask2, "Task 2", 1000, NULL, 2, &xTask2Handle);

 /* The task handle is the last parameter _____ ^^^^^^^^^^^^^ */

 /* Task 2 has/had the higher priority, so for Task 1 to reach here Task 2

 must have already executed and deleted itself. Delay for 100

 milliseconds. */

 vTaskDelay(xDelay100ms);

 }

}

Listing 38. The implementation of Task 1 for Example 9

void vTask2(void *pvParameters)

{

 /* Task 2 does nothing but delete itself. To do this it could call vTaskDelete()

 using NULL as the parameter, but instead , and purely for demonst ration purposes ,

 it calls vTaskDelete() passing its own task handle. */

 vPrintString(" Task 2 is running and about to delete itself \ r \ n");

 vTaskDelete(xTask2Handle);

}

Listing 39. The implementation of Task 2 for Example 9

Figure 24. The output produced when Example 9 is executed

http://www.freertos.org/FreeRTOS-V9.html
https://www.freertos.org/FreeRTOS-V10.html

